
Introducing L Sharp, a Modern Lisp Dialect for the
.NET Platform

Rob Blackwell, Active Web Solutions Ltd.
Copyright © 2005 Rob Blackwell and Active Web Solutions Ltd.

May 2005

Abstract
L Sharp [1] is a powerful Lisp-based scripting language for .NET. It uses a Lisp
dialect similar to Arc [2] but tightly integrates with the .NET Framework [3] which
provides a rich set of libraries.
L Sharp is free software distributed under the terms of the GNU General Public
Licence [4]. You can download the latest release from www.lsharp.org.
This paper introduces L Sharp, explains its rationale and gives practical examples of
its usage.

Keywords
Lisp, .NET, Arc, Scheme, Mono, Reflection.

Introduction
I work for Active Web Solutions, a software development and consultancy company
based in the UK. We’re working mostly (but not exclusively) with the Microsoft
Platform and the C# (C Sharp) language. My development environment is:

Windows Server 2003
Internet Information Server (IIS 6)
Visual Studio .NET 2003
Visual Studio .NET 2005 Beta
NUnit Testing framework
Visual SourceSafe

The tools are okay, but the edit, compile, run, debug loop can be annoying and I miss
the interactive development style of Lisp. Also, there is no really good scripting
language. L Sharp aims to address these shortcomings by combining the power of a
Lisp language with a really good, widely available class library, the .NET Framework.

Microsoft .NET
.NET has become something of a marketing buzzword at Microsoft. I use the term
here in its original context as a language neutral execution environment created by
Microsoft and subsequently standardised through ECMA (ECMA-335).

Languages that conform to the Common Language Infrastructure (CLI) all compile to
Intermediate Language (IL) and all have access to the same class library. That means
that it is possible to mix and match programming languages. There are some thirteen
popular languages, the main ones being Visual Basic, C# and J#. All languages use
the same Common Type System (CTS) and the same class library, “The Framework”.

The .NET Framework is available on all current Microsoft operating systems
(including handheld and mobile devices). Open source initiatives such as Mono
provide implementations for other platforms including Linux, UNIX and Mac OS X.

The .NET Framework is a large, comprehensive class library providing a wide variety
of functionality and application building blocks. Here is a small selection:

System.Collections
System.ComponentModel
System.Configuration
System.Data
System.Data.OracleClient
System.Data.SqlClient
System.Diagnostics
System.DirectoryServices
System.Drawing
System.EnterpriseServices
System.Globalization
System.IO
System.Management
System.Messaging
System.Net
System.Reflection
System.Resources
System.Runtime
System.Security
System.Threading
System.Web
System.Web.Mail
System.Web.Services
System.Xml

These cover just about all the building blocks you’d need to construct a typical
enterprise application.

L Sharp
L Sharp is implemented entirely in C# as a .NET application.

The core language is provided as a class library assembly that can be loaded and
embedded into any other .NET application. It can provide scripting for your
application with only a few lines of code.

Most people start with the command line version which provides a familiar Lisp-like
top loop.

C:\LSharp>lsharp
Welcome to L Sharp .NET, a powerful lisp-based scripting language for .NET.
Copyright (C) 2005 Rob Blackwell & Active Web Solutions.

This program is free software and is distributed under the terms of
the GNU General Public License.

For more information, see www.lsharp.org

Build 1.11.1962.14292 on Microsoft Windows NT 5.1.2600.0

> (writeline console "Hello World")
Hello World
null
>

This one line Hello World program is roughly equivalent to the following C#
application which would need to be compiled before you could try it.

using System;

class Hello
{

 [STAThread]
 static void Main(string[] args)
 {
 Console.WriteLine ("Hello World");
 }

}

You will notice that WriteLine is not a part of the L Sharp language – the evaluation
rule for L Sharp is that if the Car of the list isn’t a recognised L Sharp primitive,
function or macro, it must be a method call to the underlying framework. This simple
idea suddenly gives access to a massive library of functionality, with
(method object args) being equivalent to object.method(args); in C#,

Here is a similar program, GUI style:

(reference "System.Windows.Forms")

(using "System.Windows.Forms")

(Show MessageBox "Hello World" "L Sharp")

The deployment units in .NET are called assemblies. The reference function loads an
assembly (in this case System.Windows.Forms). The using directive permits the use
of types in a namespace, such that you do not have to qualify the use of a type in that
namespace. The last line above is the equivalent of MessageBox.Show ("Hello
World", "LSharp") in C#.

Dialect
Microsoft has C# (a C-like derivative) and J#, a Java-like language. L Sharp was an
obvious choice of name for a Lisp-like language.

In the same way that C# isn't C and J# isn't Java, L Sharp isn't Common Lisp; you can
recognise the parentage but they aren't the same thing. L Sharp is tightly integrated
with .NET and that means using the Common Type System.

When I started to experiment with L Sharp, I quite quickly established the
mechanisms for creating Cons cells and Lists, as well as a very simple evaluator. With
so much functionality available with no code (just by reflecting over and calling the
framework), it was hard to decide on a Lisp dialect.

Common Lisp would have provided standardisation and perhaps a larger body of
code, but I just didn’t want or need all its facilities. I already had a type system,
exceptions and a class library etc provided by the framework.

Scheme was a possibility, but I’d been reading Paul Graham’s writings on Arc and it
seemed to strike a chord with me. If L Sharp was going to be a modern Lisp
implementation, then why not borrow Paul’s ideas borne of many years’ experience? I
knew this would be controversial, but that’s all part of the L Sharp experiment!

An RSS Viewer in 5 Lines

;;; Lists all the items from an RSS Feed

(reference "System.Xml")

(= news (new System.Xml.XmlDocument))

(call load news "http://www.theregister.co.uk/headlines.rss")

(foreach node (selectnodes news "/rss/channel/item/title")

 (prl (innertext node)))

I contend that this would be harder to write or at least, less readable in most other
languages. The Lisp approach allowed me to write and try out the lines in the program
incrementally; the framework gave me some very high level capability (loading and
querying an XML document).

Implementation Notes

Because L Sharp is built in .NET, Lists can contain any .NET object. I had to
rationalise the Lisp types with the Common Type System, so T becomes true and NIL
becomes null.

L Sharp uses reflection to find objects and methods in the framework or any loaded
class library. If L Sharp doesn’t already include a feature that you need, it’s easy to
build that feature in another .NET language, load it and start using it straight away.
Both the Read Table and the table of primitives can be changed, so you can override
any of the built in L Sharp features and experiment with your own dialects.

Happily, the .NET framework already has a garbage collector so I didn’t have to
concern myself with memory management – Lists get garbage collected by the
framework automatically.

The source code is simple, well commented, easily navigable and available as open
source. It’s easy to read, understand and extend.

Status
L Sharp was released early in 2005 and has already built up a small following. People
are mostly using it for experimentation and small bits of “glue” code. Here are some
typical current applications.

- Data import / export / mangling scripts; things that you may use Perl or Awk for on
Linux can be done fairly easily on Windows with L Sharp.

- GUI Applications, replacing TK / TCL scripts

- Web site monitoring / testing tools.

- Experimentation with new Microsoft APIs such as Longhorn and Avalon,

Futures
Here are some of my objectives for future developments:

- Track what happens with Arc; continue to learn and borrow ideas. Full Arc
compatibility may be a long term goal.

- The Mono open source .NET project is gaining significant momentum; L Sharp
needs to ride that wave. L Sharp does work with Mono, but we need to do some more
work to integrate it better and promote it within that community. I see this as the
principal route to cross platform compatibility.

- Provide a compiler to generate standalone .NET assemblies. This could allow L
Sharp applications to be more easily integrated with other .NET languages and
developments, particularly for the provision of libraries. It should also give some
performance increases.

- More attention needs to be given to an Integrated Development Environment. A
simple prototype is included with the source distribution. Some people are using
Emacs but we don’t yet have SLIME support. A Visual Studio add-in would make L
Sharp more accessible to the .NET community.

- It should be possible to use L Sharp as a web application scripting language using
ASP.NET.

- L Sharp needs some larger applications to prove that it is ready for real world use.

- I encourage more input from The Lisp Community. I need more people to try L
Sharp, give me feedback and hopefully help to extend and grow the language.

References
[1] The L Sharp Home Page http://www.lsharp.org

[2] Arc is a new dialect of Lisp by Paul Graham.
http://www.paulgraham.com/arc.html

[3] Microsoft .NET Home Page http://www.microsoft.com/net/

[4] The GNU General Public License http://www.gnu.org/copyleft/gpl.html

