
Termite: a Lisp for Distributed Computing

Guillaume Germain, Marc Feeley, Stefan Monnier
Université de Montréal

Département d’informatique et r.o.
Canada

{germaing, feeley, monnier}@iro.umontreal.ca

ABSTRACT
Termite is a language and system offering a simple and pow-
erful tool for expressing distributed computation. It is based
on a message-passing model of concurrency inspired by Er-
lang, and on a variant of the functional language Scheme.

Our system is an appropriate tool for building custom proto-
cols and abstractions for distributed computation. Its open
network model allows for the building of non-centralized dis-
tributed applications. The possibility of failure is reflected
in the model, and ways to handle them are proposed. The
existence of first-class continuations is exploited in order to
allow the expression of high-level concepts such as transpar-
ent migration of processes.

We describe the Termite model with its implications and
describe sample applications built with Termite. We con-
clude with a discussion of the current implementation and
its performance.

General Terms
Distributed computing in Lisp

Keywords
Distributed computing, Scheme, Lisp, Erlang, Continua-
tions

1. INTRODUCTION
There is a great need for the development of distributed
applications. These applications are found under different
forms: email, web pages, newsgroups, chat rooms, games,
telephony, file swapping, etc. All distributed applications
share the property of being constituted from a set of pro-
cesses executing concurrently on different computers and
communicating in order to exchange data and coordinate
their activities. The possibility of failure is always present
in that setting, due to the unreliability of networks and com-
puter hardware.

When building a distributed application, the common prac-
tice is to use an ad-hoc approach for each particular prob-
lem. Much of the work has to be redone every time: how
to serialize the application’s data, how to synchronize the
computation, how to deal with exceptional conditions like
network failures, etc. This incurs an overhead that slows
down the development process and introduces numerous bug
opportunities.

Instead of having to repeat a part of the work every time,
Termite offers a simple yet high-level concurrency model
on which reliable distributed applications can be built. As
macros abstract over syntax, closures abstract over data and
continuations abstract over control, the concurrency model
of Termite aims to provide the capability of abstracting over
distributed computations. An important objective is that it
should be flexible enough to allow the programmer to easily
build and experiment with custom distributed protocols and
applications.

We will first present the core concepts of the Termite model,
and the various aspects that are a consequence of that model.
The language will then be described, followed by extended
examples. Finally, the current implementation will be pre-
sented with some performance measurements.

2. THE TERMITE PROGRAMMING MODEL
The foremost design philosophy of the Scheme [12] language
is the definition of a small, coherent core which is as gen-
eral and powerful as possible. This justifies the presence of
first-class closures and continuations in the language: these
features are able to abstract data and control, respectively.
In designing Termite, this philosophy has been extended to
concurrency and distribution features. The model must be
simple and extensible, allowing the programmer to build his
own concurrency abstractions.

Distributed computations are composed of multiple concur-
rent programs running in physically separated spaces and
involving data transfer through a potentially unreliable net-
work. In order to model this reality, the concurrency model
used in Termite views the computation as a set of isolated
sequential processes which are uniquely identifiable across
the distributed system. They communicate with each other
by exchanging messages. Failure is reflected in Termite by
the uncertainty associated with the transmission of a mes-
sage: there is no guarantee that a message sent will ever be
delivered.



The core features of Termite’s model are: isolated sequential
processes, message passing and failure.

2.1 Isolated sequential processes
Termite processes are lightweight. There could be hundreds
of thousands of them in a running system. Since they are an
important abstraction in the language, their creation should
not be considered costly by the programmer. They should
be freely used to model the problems at hand.

A Termite process is executed in the context of a node.
Nodes are identified with a node identifier that contains in-
formation to locate a node physically and connect to it (see
section 3.4 for details). It is possible to spawn a new process
using the special form spawn, and to migrate that process
to another node.

Termite processes are identified with a process identifier or
pid. Pids are universally unique. We make the distinction
here between globally unique, which means unique at the
node level, and universally unique, which means unique at
the whole distributed network level. A pid is therefore a
reference to a process and contains enough information to
determine the node on which the process is located. It is
important to note that there is no guarantee that a pid refers
to a process that is reachable or still alive.

Strong isolation is enforced on each of the processes: it is im-
possible for a process to directly access the memory space
of another process. This is meant to model the situation
of a distributed system, and has the advantage of avoid-
ing the problems relative to sharing memory space between
processes. This also avoids having to care about mutual
exclusion at the language level. There is no need for mu-
texes and condition variables. Another consequence of that
model is that there is no need for a distributed garbage col-
lector, since there cannot be any foreign reference between
two nodes’ memory spaces. On the other hand, a live pro-
cess might become unreachable, causing a memory leak.

2.2 Sending and receiving messages
In Termite, a message can be any serializable first class
value. It can be an atomic value such as a number or a
symbol, or a compound value such as a list, record, or contin-
uation, as long as it contains only serializable values. Each
process has a single mailbox in which messages are stored
in the order in which they are delivered.

The message sending operation is asynchronous. When a
process sends a message, this is done without the process
blocking.

The message retrieval operation is synchronous. A process
attempting to retrieve a message from its mailbox will block
if no acceptable message is available.

Here is an example showing the basic operators used in Ter-
mite. A process A spawns a new process B. The process B
sends a message to A. The process A waits until the message
is received.

(let ((me (self)))

(spawn

(! me "Hello, world!")))

(?) =⇒ "Hello, world!"

The procedure self returns the pid of the current process.
The procedure ! is the “send message” operation, while the
procedure ? is the “retrieve the next message” operation.

2.3 Failure
Failure is caused by the unreliability of the physical, “real
world” aspects of a distributed computation. A computa-
tion being executed on a single computer with no exterior
communication generally doesn’t have to care whether the
computer crashes. This isn’t the case in a distributed set-
ting, where some parts of the computation might go on even
in the presence of hardware failure or if the network connec-
tion goes down. In order to model failure, sending a message
in Termite is an unreliable operation 1.

Since the transmission of a message is unreliable, the only
way to know for sure if a message got to its destination is to
have a protocol where the originating process will wait for an
acknowledgment message to be sent back. The mechanism
for handling the waiting period is to have the possibility
of specifying timeouts for the amount of time to wait for
messages. This is a basic mechanism on which higher level
failure handling can be built.

3. PERIPHERAL ASPECTS
Some other Termite features are also notable. While they
aren’t core features, they come naturally when considering
the basic model. The most interesting of those derived fea-
tures are serialization, how to deal with mutation, exception
handling, the naming of computers and establishing network
connections to them, and migrating computation in the dis-
tributed network.

3.1 Serialization
There should not be restrictions on the type of data that
can constitute a message. Therefore, it is important that
the runtime system of the language supports serialization
of every first-class value in the language, including closures
and continuations.

But this is not always possible. Some first-class values in
Scheme are hard to serialize meaningfully, like ports and
references to physical devices. It will not be possible to seri-
alize a closure or a continuation that has a direct reference
to one of these objects in their environment.

To avoid having references to non-serializable objects in the
environment, we build proxies to those objects by using pro-
cesses, so that the serialization of such an object will be just
a pid. Therefore, in Termite, ports (like open files) or refer-
ences to physical devices (like the mouse and keyboard) are
exposed as processes.

Abstracting non-serializable objects as processes has two
other benefits. First, it enables the creation of interesting

1Joe Armstrong calls this “send and pray” semantics [2].



abstractions. For example, a click of the mouse will send
a message to some “mouse listener”, sending a message to
the process proxying the standard output will cause it to be
printed, etc. Secondly, this allows non-movable resources to
be accessed through the network.

3.2 Explicit mutation
To keep the semantics clean and the implementation sim-
ple, mutation is not available. This allows us to implement
message-passing within a given computer without having to
copy the content of the message.

The model therefore forbids explicit mutation in the system
(as with the special form set! and procedures set-car!,
vector-set!, etc.) The fact that no explicit mutation (in
the Scheme sense) is allowed in Termite isn’t as big a lim-
itation as it seems at first. It is still possible to replace
or simulate mutation using processes. We just need to ab-
stract state using messages and suspended processes. This
is a reasonable approach because processes are lightweight.
An example of a mutable data structure implemented using
a process is given in section 4.6.

3.3 Exception handling
A Termite exception can be any first-class value. It can be
raised by an explicit operation, or it can be the result of a
software error (like division by zero or a type error).

Exceptions are dealt with by installing dynamically scoped
handlers. Any exception raised during execution will cause
the handler to be invoked with the exception as a parameter.
The handler can either choose to manage that exceptional
condition or to raise it again. If it manages the exceptional
condition it can resume execution either at the point the
exception was signaled (if the form handle is used) or at
the point that the handler was installed (if the form catch

is used). If it raises the exception again, it will cause the
nearest encapsulating handler to be invoked. If an exception
propagates to the root of the process without being managed
(an uncaught exception), the process dies.

Exception propagation between nodes occurs when a pro-
cess dies and it is linked to other processes. Links between
processes are directed. A process which has an outbound
link to another process will send any uncaught exception
to the other process. Note that exception propagation, like
all communication, in unreliable. It would be reasonable to
think that the implementation might make an extra effort
to ensure that an exception is delivered since that kind of
message might be more important for the correct execution
of the application.

Receiving an exception causes that exception to be raised in
the receiving process at the moment of the next “message
retrieve” operation by that process.

Links can be established in both directions between two pro-
cesses. In that situation the link is said to be “bidirectional”.
The direction of the link should reflect the relation between
the two processes. In a supervisor-worker relation, a bidi-
rectional link will be used since both the supervisor and the
worker needs to learn about the death of the other (the su-
pervisor so it may restart the worker, the worker so it can

stop executing if not supervised anymore). In a monitor-
worker relation where the monitor is an exterior observer to
the worker, an outbound link from the worker will be used
since the death of the monitor should not affect the worker.

3.4 Connecting nodes
Termite processes execute on nodes. Nodes connect to each
other when there is a need to, in order to exchange mes-
sages. The current practice in Termite is to uniquely iden-
tify nodes by binding them to an IP address and a TCP
port number. Node references contain that information and
therefore it is possible to reach a node from the information
contained in the reference. Those references are built using
the make-node operator.

The distributed system is said to be “open”: nodes can be
added or removed from a distributed computation at any
time.

As it is possible to spawn a process on the current node, it
is possible to spawn a process on a remote node by migrat-
ing a process. This is one of the key features that enable
distribution.

The concept of global namespace as it exists in Scheme is
tied to a node. A variable referring to the global names-
pace will resolve to the value tied to that variable on the
particular node the process is currently executing.

3.5 Remote procedure calls
A process might make multiple concurrent requests to an-
other process. Also, replies to requests might come from a
third party. In those cases, it must be possible to uniquely
mark the requests in order to be able to identify which reply
goes with which request. For that we use universally unique
references called tags. They can be used to distinguish data
at the whole distributed network level.

3.6 Process migration
Processes aren’t necessarily tied to the node they are cur-
rently on. A process that isn’t acting as a representative of a
non-serializable object is independent of the location where
it is executing. This opens up the possibility of migrating
processes between nodes. Process migration may be useful
in some circumstances: it may be used to implement load-
balancing (migrate process to systems with a lower load),
move a running program to another computer in order to
perform maintenance, migrate the code execution instead of
resources in cases where it is less costly to do so, etc.

Process migration is implemented by serializing a continua-
tion. Since a continuation is somewhat like a representation
of a process frozen at some point in time, transmitting it
through the network enables process mobility.

Process migration, contrary to task migration, implies that
the process keeps its identity once it has moved to another
node. This also means that for the other processes, a process
migration is transparent: they can keep sending it messages
and the runtime will ensure that those will follow to the
right destination.



4. THE TERMITE LANGUAGE
This section introduces the Termite language through exam-
ples. It is important to note that for the sake of simplicity
those examples assume that messages will always be deliv-
ered (no failure) and that they will be received in the same
order that they are sent.

4.1 Making a “server” process
In the following code, we create a process called pong-server.
This process will reply with the symbol pong to any message
that is a list of the form (pid ’ping) where pid refers to
the originating process:

(define pong-server

(spawn

(let loop ()

(let ((msg (?)))

(if (and (list? msg)

(= (length msg) 2)

(pid? (car msg))

(eq? (cadr msg) ’ping))

(let ((from (car msg)))

(! from ’pong)

(loop))

(loop))))))

(! pong-server (list (self) ’ping))

(?) =⇒ pong

4.2 Selective message retrieval
While the ? operator retrieves the next available message in
the process’ mailbox, sometimes it can be useful to be able
to choose the message to retrieve based on certain criteria.

The selective message retrieval operator is ??. It takes a
predicate for argument. The first message in the mailbox
which satisfies that predicate will be retrieved.

Here’s an example of the ?? procedure in use:

(! (self) 1)

(! (self) 2)

(! (self) 3)

(?) =⇒ 1

(?? odd?) =⇒ 3

(?) =⇒ 2

4.3 Pattern matching
The previous pong-server example showed that ensuring
that a message is well-formed and extracting relevant infor-
mation from it can be quite verbose. Since those are frequent
operations, Termite offers a pattern matching facility.

Pattern matching is implemented as a macro called recv

conceptually built on top of the ?? procedure. It has two
simultaneous roles: selective message retrieval and data de-
structuring. The following code implements the same func-
tionality as the previous “pong server” but using recv:

(define better-pong-server

(spawn

(let loop ()

(recv

((from ’ping) ; pattern to match

(where (pid? from)) ; additional constraint

(! from ’pong))) ; action

(loop))))

4.4 Using timeouts
The way to deal with unreliable message delivery is to spec-
ify a maximum amount of time to wait for the reception of
a message. This is achieved by giving a timeout delay and
a default value to be returned if the timeout is reached as
optional arguments to the message retrieval procedures (ie.
? and ??). If no timeout is specified, the process will wait
forever. If no default value is specified, the timeout symbol
will be raised as an exception. It is also possible to add an
extra after clause to recv:

(! some-server (list (self) ’request argument))

(? 10) ; waits for a maximum of 10 seconds

;; or, equivalently:

(recv

(x x)

(after 10 (raise ’timeout)))

4.5 Remote procedure call
Here is an example of an RPC server to which we make
uniquely identified requests. In this case a synchronous call
to the server is made:

(define rpc-server

(spawn

(let loop ()

(recv

((from tag (’add a b))

(! from (list tag (+ a b)))))

(loop))))

(let ((tag (make-tag)))

(! rpc-server (list (self)

tag

(list ’add 21 21)))

(recv

;; note the reference to tag in

;; the current lexical scope

((,tag reply) reply))) =⇒ 42

The pattern of implementing a synchronous call by creating
a tag and then waiting for the corresponding reply by testing
for tag equality is frequent. This pattern is abstracted by
the procedure !?. The following call is equivalent to the last
let expression in the previous code:

(!? rpc-server (list ’add 21 21))

Note that the procedure !? can take optional timeout and
default value arguments like the message retrieving proce-
dures.



4.6 Mutable data structure
Mutation isn’t allowed in Termite in the same way that it is
present in Scheme, but it is still possible to implement mu-
table data structures using a suspended process to represent
state. Here is an example of the implementation of a cell:

(define (make-cell content)

(spawn

(let loop ((content content))

(recv

((from tag ’ref)

(! from (list tag content))

(loop content))

((’set! content)

(loop content))))))

(define (cell-ref cell)

(!? cell ’ref))

(define (cell-set! cell value)

(! cell (list ’set! value)))

4.7 Dealing with exceptional conditions
Explicitly signaling an exceptional condition (like an error)
is done using the raise procedure. Exception handling is
done using one of the special forms catch and handle, which
installs a dynamically scoped exception handler. The proce-
dure spawn-link creates a new process, just like spawn, but
that new process is bidirectionally linked with the current
process.

After invoking the handler on an exception, the form catch

will resume execution at the point where the handler was
installed, while the form handle will resume execution at
the point where the exception was raised. The following
example illustrates this difference:

(catch

(lambda (exception) exception)

(raise 42) ; this will not return

123) =⇒ 42

(handle

(lambda (exception) exception)

(raise 42) ; control will resume here

123) =⇒ 123

This example shows how an exception can propagate through
a link between two processes:

(catch

(lambda (exception) #t)

(spawn (raise ’error))

(? 1 ’ok)

#f) =⇒ #f

(catch

(lambda (exception) #t)

(spawn-link (raise ’error))

(? 1 ’ok)

#f) =⇒ #t

4.8 Process migration
To migrate a process to a remote node a reference to the
remote node is needed. It is constructed by giving the IP
and TCP port number as arguments to the make-node pro-
cedure. Through its migration a process keeps its identity
and the content of its mailbox. Here is an example of its
use:

;; reference to the current node

(define node1 (current-node))

;; reference to some remote node

(define node2 (make-node "example.com" 3000))

(define migrating

(spawn

(let loop ()

(recv

((from tag ’where)

(! from (list tag (current-node))))

((’migrate to)

(migrate to))))))

(!? migrating ’where) =⇒ node1
(! migrating node2)

(!? migrating ’where) =⇒ node2
(! migrating node1)

(!? migrating ’where) =⇒ node1

Note that the procedure migrate has to be called by the
process that is migrating. A process cannot force another
to migrate, it needs the collaboration from the migrating
process. This is important because in general a change in
a process’ execution context requires it to adapt to its new
location.

4.9 Remotely spawning a process
In order to spawn a process remotely the process is first
spawned on the local node, and then migrates to the desig-
nated node:

(define node (make-node "example.com" 3000))

(let ((me (self)))

(spawn

(migrate node)

(! me ’boo))) =⇒ a pid

(?) =⇒ boo

Note that establishing links to remote processes will also
work:

(define node (make-node "example.com" 3000))

(catch

(lambda (exception) exception)

(let ((me (self)))

(spawn-link

(migrate node)

(raise ’error)))

(? 2 ’ok)) =⇒ error



4.10 Abstractions built using continuations
It is possible to define interesting abstractions by using call/cc.
In this section we give as an example process cloning and
dynamic code update.

Process cloning is simply creating a new process from an
existing process with the same state and the same behavior.
Here is an example of a process which will reply to a ’clone

message with a thunk that makes any process become a
“clone” of that process:

(define original

(spawn

(let loop ()

(recv

((from tag ’clone)

(call/cc

(lambda (clone)

(! from (list tag (lambda ()

(clone #t))))))))

(loop))))

(define clone (spawn ((!? original ’clone))))

Dynamic code update in a running system can be inter-
esting, especially with long-running computations or high-
availability environments. Here is an example of a running
process having its code being updated dynamically:

(define server

(spawn

(let loop ()

(recv

((’update k)

(k #t))

((from tag ’ping)

(! from (list tag ’gnop)))) ; bug

(loop))))

(define new-server

(spawn

(let loop ()

(recv

((’update k)

(k #t))

((from tag ’clone)

(call/cc

(lambda (k)

(! from (list tag k)))))

((from tag ’ping)

(! from (list tag ’pong)))) ; fixed

(loop))))

(!? server ’ping) =⇒ gnop

(let ((replacement (!? new-server ’clone)))

(! server (list ’update replacement)))

(!? server ’ping) =⇒ pong

Note that this allows us to build a new version of a running
process, test and debug it separately and when it is ready
replace the running process with the new one. Note that this
necessitates cooperation from the process having its code
replaced (it understands the update message).

5. EXTENDED EXAMPLES
One of the goals of Termite is to be a good framework to
experiment with abstractions of patterns of concurrency and
distributed protocols. In this section we present three exam-
ples: first a simple load-balancing facility, then a technique
to abstract concurrency in the design of a server and finally
a way to transparently “robustify” a process.

5.1 Load Balancing
This first example is a simple implementation of a load-
balancing facility. It is built from two components: the first
is a “meter supervisor”. It is a process which will super-
vise workers (called “meters” in this case) on each node of
a cluster in order to collect load information. The second
component is the work dispatcher: it receives a closure to
evaluate, then dispatches that closure for evaluation to the
node with the lowest current load.

Meters are very simple processes. They do nothing but send
the load of the current node to their supervisor every second:

(define (start-meter supervisor)

(let loop ()

(! supervisor

(list ’load-report

(self)

(local-loadavg)))

(recv (after 1 ’ok)) ; pause for a second

(loop)))

The supervisor creates a dictionary to store current load
information for each meter it knows about. It listens for the
update messages and replies to requests for the node in the
cluster with the lowest current load and to requests for the
average load of all the nodes. Here is a simplified version of
the supervisor:

(define (meter-supervisor meter-list)

(let loop ((meters (make-dict)))

(recv

((’load-report from load)

(loop (dict-set meters from load)))

((from tag ’minimum-load)

(let ((min (find-min (dict->list meters))))

(! from (list tag (pid-node (car min)))))

(loop dict))

((from tag ’average-load)

(! from (list tag

(list-average

(map cdr (dict-list meters)))))

(loop dict)))))

(define (minimum-load supervisor)

(!? supervisor ’minimum-load))

(define (average-load supervisor)

(!? supervisor ’average-load))

And here is how such a supervisor might be started:



(define (start-meter-supervisor)

(spawn

(let ((supervisor (self)))

(meter-supervisor

(map

(lambda (node)

(spawn

(migrate node)

(start-meter supervisor)))

*node-list*)))))

Now that we can establish what is the current load on nodes
in a cluster, we can implement load balancing. The “work
dispatching server” receives a thunk, and migrates its execu-
tion to the currently least loaded node of the cluster. Here
is such a “work dispatching server”:

(define (start-work-dispatcher load-server)

(spawn

(let loop ()

(recv

((from tag (’dispatch thunk))

(let ((min-loaded-node

(minimum-load load-server)))

(spawn

(migrate min-loaded-node)

(! from (list tag (thunk)))))))

(loop))))

(define (dispatch dispatcher thunk)

(!? dispatcher (list ’dispatch thunk)))

It is then possible to use the procedure dispatch to request
a thunk to be executed on the most lightly loaded node in
a cluster.

5.2 Abstracting Concurrency
Since building distributed applications is a complex task, it
is a good practice to abstract the notion of concurrency when
expressing common patterns. An example of such a common
pattern would be a server process that will be used in a
classic client-server pattern. Erlang’s concept of behaviors is
used to do that: behaviors are implementations of particular
patterns of concurrent interaction.

The behavior given as example in this section is derived from
the “generic server” behavior. A generic server is a process
that can be started, stopped and restarted, and will answer
RPC-like requests.

The behavior contains all the code that is necessary to han-
dle the message sending and retrieving necessary in the im-
plementation of a server. The behavior is only the generic
framework. To create a server we need to parameterize the
behavior using a plugin that describes the server we want to
create. A plugin contains closures to be used as callbacks
when certain events occur in the server.

A plugin will only contain sequential code. All the code
having to deal with concurrency and passing messages will
be in the generic server’s code. When a callback is invoked,
the current server state will be given as an argument. The
reply of the callback will contain the potentially modified
server code.

A generic server plugin contains four closures, each to be
called to react to a particular situation. The first is for server
initialization, called when the server is created. The second
is for procedure call to the server: the closure will dispatch
on the term received in order to execute the function call.
Procedure calls to the server are synchronous. The third
closure is for casts, which are asynchronous messages sent to
the server in order to do management tasks (like restarting
or stopping the server). The fourth and last closure is a
function to be called when the server is terminated.

Here’s an example of a generic server plugin implementing
a key/value server:

(define key/value-generic-server-plugin

(make-generic-server-plugin

(lambda () ; INIT

(print "Key-Value server starting")

(make-dict))

(lambda (term from state) ; CALL

(match term

((’store key val)

(dict-set! state key val)

(list ’reply ’ok state))

((’lookup key)

(list ’reply (dict-ref state key) state))))

(lambda (term state) ; CAST

(match term

((’stop (list ’stop ’normal state)))))

(lambda (reason state) ; TERMINATE

(print "Key-Value server terminating"))))

It is then possible to access the functionality of the server
by using the generic server interface:

(define (kv:start)

(generic-server-start-link

key/value-generic-server-plugin))

(define (kv:stop server)

(generic-server-cast server ’stop))

(define (kv:store server key val)

(generic-server-call server (list ’store key val)))

(define (kv:lookup server key)

(generic-server-call server (list ’lookup key)))

Using such concurrency abstractions will help in building
reliable software, because the software development process
will be less error-prone. We reduce complexity at the cost
of losing some flexibility.

5.3 Fault Tolerance
Encouraging simpler code is only a first step in order to be
able to build robust applications. We also need to be able
to handle system failures and software errors. Supervisors
are another kind of behaviors in the Erlang language, but
we give a slightly different implementation from Erlang’s
here. A supervisor process is responsible for supervising the



correct execution of a worker process. If there is a failure in
the worker, the supervisor will restart it if necessary.

Here is an example of use of such a supervisor:

(define (start-pong-server)

(let loop ()

(recv

((from tag ’crash)

(! from (list tag (/ 1 0))))

((from tag ’ping)

(! from (list tag ’pong))))

(loop)))

(define robust-pong-server

(spawn-thunk-supervised start-pong-server))

(define (ping server)

(!? server ’ping 1 ’timeout))

(define (crash server)

(!? server ’crash 1 ’crashed))

(define (kill server)

(! server ’shutdown))

(print (ping robust-pong-server))

(print (crash robust-pong-server))

(print (ping robust-pong-server))

(kill robust-pong-server)

This will generate the following trace (note that the mes-
sages prefixed with info: are debugging messages from the
supervisor) :

(info: starting up supervised process)

pong

(info: process failed)

(info: restarting...)

(info: starting up supervised process)

crashed

pong

(info: had to terminate the process)

(info: halting supervisor)

The pid returned by the call to spawn-thunk-supervised

is the one of the supervisor, but any message sent to the
supervisor will be sent to the worker. The supervisor is then
mostly transparent: interacting processes don’t necessarly
know that it is there.

There is one special message that will be intercepted by the
supervisor, and that is a message consisting of the single
symbol ’shutdown. Sending that message to the supervisor
will make it invoke a shutdown procedure that will request
the process to end its execution, or terminate it if it doesn’t
collaborate. In the previous trace, the “had to terminate
the process” message indicates that the process didn’t ac-
knowledge the request to end its execution and was forcefully
terminated.

A supervisor can be parameterized to set the acceptable
restart frequency tolerable for a process. A process failing
more often than a certain limit will be shut down. It is also

possible to specify the delay that the supervisor will wait for
when sending a shutdown request to the worker.

The abstraction shown in this section is useful to construct
a fault-tolerant server. A more general abstraction would be
able to supervise multiple processes at the same time, with
a policy determining the relation between those supervised
processes (should they all be restarted when a single process
fails or just the failed process, etc.).

6. THE TERMITE IMPLEMENTATION
A prototype Termite system has been implemented. It is
built on top of Gambit-C 4 [5]. Two features of Gambit-C
were very helpful when implementing the system: lightweight
threads and object serialization.

Gambit-C supports lightweight language-level threads as spec-
ified by SRFI-18 [6] and SRFI-21 [7]. It is possible to start
millions of threads in a single program. This makes the
Termite model applicable when used with Gambit.

Serialization is also supported for an interesting subset of
Gambit-C objects. In particular closure and continuation
serialization is supported. This makes it possible to imple-
ment process migration in the language by using call/cc.

Location transparency means that messages sent to a pro-
cess will reach it even if it has migrated from its original
position. This is transparent for the sending process. It
is implemented by keeping a migration table on each node.
This table keeps track of the location of processes that were
once executing on the node but have migrated away. Each
process has thread-local information that stores the set of
nodes on which the process has been executing. When a
node receives a message that is intended for a process that
has migrated away, the node forwards the message to the
node where the process has migrated and sends back a mes-
sage to the node from which the message originates in order
to allow it to update its migration table. This is a technique
derived from the one explained in [13]. When a migrating
process stops executing, it sends a message to each of the
nodes it has executed on so they can clean up their migration
table.

No modification of the underlying Gambit system was needed
to implement the prototype Termite system, but it ended up
being a motivation to improve the performance of Gambit’s
serialization mechanism.

7. EXPERIMENTAL RESULTS
In order to evaluate the performance of Termite, some bench-
mark programs were executed using Termite version 0.4.
When possible, the equivalent Erlang program was executed
using Erlang/OTP version 5.4.8 to compare the two systems.
Moreover, some of the benchmarks were also rewritten di-
rectly in Gambit Scheme and executed with version 4.0 beta
14 to evaluate the implementation overhead. All the bench-
marks were executed on 2.2 GHz AMD Athlon 64-based PCs
with 2GB RAM and a 100Mb/s Ethernet running Linux
2.6.10.



7.1 Ring of processes
This benchmark creates a ring of 250, 000 processes on a
single node, then sends around the ring a number that is
decremented by each process successively. When the number
passed around is 0, the process stops executing after relaying
the 0 to the next process.

The benchmark is run two times: first, with an initial seed
of 0, so that all that is done is to create the ring then pass
a message around to destroy it, in order to put more strain
on process creation and destruction. Then it is run with
an initial seed of 1, 000, 000, so that message passing time
becomes more significant in the test. Performance is given
in seconds, lower is better.

Seed Erlang Gambit Termite

0 0.92 2.82 4.88
1, 000, 000 1.63 5.53 8.21

7.2 Ping-Pong Exchanges
This benchmark measures the maximum number of “ping-
pong” exchanges per second that can be made between two
processes, under three different conditions: when the pro-
cesses are executing on the same node, when the processes
are executing on two nodes running on the same computer
and finally when the processes are executing on two nodes
running on different computers but on the same local net-
work. Performance is given in number of round-trips per
second, higher is better.

Erlang Gambit Termite

Same node 2,001,366 457,415 206,079
Same computer 16,603 − 1,662
Local network 10,970 − 1,037

7.3 Process Migration
This benchmark was made with Termite only, it measures
the process migration time for between two nodes on the
same computer and between two nodes running on different
computers but on the same local network. Performance is
given in seconds, lower is better.

Termite

Same computer 0.109
Local network 0.115

Note that the Termite code was compiled for the two first
benchmarks, while it was interpreted for the migration bench-
mark. This is due to current implementation issues related
to the serialization of compiled code. The Scheme and the
Erlang code were compiled for all benchmarks.

8. RELATED WORK
The Actors model is a general model of concurrency that
has been developed by Hewitt, Baker and Agha [11] [10] [1].
It specifies a concurrency model where independent actors
concurrently execute code and exchange messages. Message
delivery is guaranteed in the model. Termite might be con-
sidered as an “impure” actor language, because it doesn’t
adhere to the strict “everything is an actor” model since
only processes are actors. It also diverges from that model
by the unreliability of the message transmission operation.

Erlang [3] [2] is a distributed programming system that
has had a significant influence on this work. Erlang has
been developed in the context of building telephony applica-
tions, which are inherently concurrent. The idea of multiple
lightweight isolated processes with unreliable asynchronous
mesrsage transmission and controlled error propagation has
been demonstrated in the context of Erlang to be useful
and efficient. Erlang is a dynamically-typed semi-functional
language similar to Scheme in some regards. Those char-
acteristics have motivated the idea of integrating Erlang’s
concurrency ideas to a Lisp language. Termite notably adds
to Erlang first-class continuations, macros and the possi-
bility to transparently migrate processes. It also features
directed links between processes, while Erlang’s links are
always bidirectionals.

Kali [4] is a distributed implementation of Scheme. It al-
lows the migration of higher-order objects between comput-
ers in a distributed setting. It uses a shared-memory model
and requires a distributed garbage collector. It works using
a centralized model where a node is supervising the others,
while Termite has a peer-to-peer model. Kali doesn’t feature
a way to deal with network failure, while that is a fundamen-
tal aspect of Termite. It implements efficient communication
by keeping a cache of objects and lazily transmitting closure
code, which are techniques a Termite implementation might
benefit from.

The Tube [9] demonstrates a technique to build a dis-
tributed programming system on top of an existing Scheme
implementation. The goal is to have a way to build a dis-
tributed programming environment without changing the
underlying system. It relies on the “code as data” prop-
erty of Scheme and on a custom interpreter able to save
state to code represented as s-expressions in order to imple-
ment code migration. It intends to be a minimal addition
to Scheme that enables distributed programming. Unlike
Termite, it doesn’t feature lightweight isolated process and
doesn’t consider the problems associated with failures.

Dreme [8] is a distributed programming system intended
for open distributed systems. Objects are mobile in the net-
work. It uses a shared memory model and implements a
fault-tolerant distributed garbage collector. It differs from
Termite in that if objects are not explicitly migrated, send-
ing them to remote processes will be done by reference.
Those references are resolved transparently across the net-
work, but the cost of operations can be hidden, while in
Termite costly operations are explicit. The system also fea-
tures a User Interface toolkit that helps the programmer to
visualize distributed computation.

9. CONCLUSION
The Termite system has been shown to be an appropri-
ate and interesting language and system to implement dis-
tributed programs. Its core model is simple yet allows for
the abstraction of patterns of distributed computation.

The current implementation is built on the Gambit Scheme
system. While this has had the benefit of giving a lot of free-
dom and flexibility during the exploration phase, it would be
interesting to build from scratch a system with the features
described in this paper. Such a system would have to take



into consideration the constant need for serialization, try to
have processes as lightweight and efficient as possible, look
into optimization at the level of what needs to be transferred
between nodes, etc. Apart from the optimization it would
also benefit from an environment where a more direct user
interaction with the system would be possible. We intend
to take on those problems in future research while pursuing
the ideas laid in this article.

10. ACKNOWLEDGMENTS
This work was supported in part by the Natural Sciences
and Engineering Research Council of Canada.

11. REFERENCES
[1] Gul Agha. Actors: a model of concurrent computation

in distributed systems. MIT Press, Cambridge, MA,
USA, 1986.

[2] Joe Armstrong. Making reliable distributed systems in
the presence of software errors. PhD thesis, The Royal
Institute of Technology, Department of
Microelectronics and Information Technology,
Stockholm, Sweden, December 2003.

[3] Joe Armstrong, Robert Virding, Claes Wikström, and
Mike Williams. Concurrent Programming in Erlang.
Prentice-Hall, second edition, 1996.

[4] H. Cejtin, S. Jagannathan, and R. Kelsey.
Higher-Order Distributed Objects. ACM Transactions
on Programming Languages and Systems,
17(5):704–739, 1995.

[5] Marc Feeley. Gambit-C version 4.
http://www.iro.umontreal.ca/~gambit.

[6] Marc Feeley. SRFI 18: Multithreading support.
http://srfi.schemers.org/srfi-18/srfi-18.html.

[7] Marc Feeley. SRFI 21: Real-time multithreading
support.
http://srfi.schemers.org/srfi-21/srfi-21.html.

[8] Matthew Fuchs. Dreme: for Life in the Net. PhD
thesis, New York University, Computer Science
Department, New York, NY, United States, July 2000.

[9] David A. Halls. Applying mobile code to distributed
systems. PhD thesis, University of Cambridge,
Computer Laboratory, Cambridge, United Kingdom,
December 1997.

[10] C. E. Hewitt and H. G. Baker. Actors and continuous
functionals. In E. J. Neuhold, editor, Formal
Descriptions of Programming Concepts. North
Holland, Amsterdam, NL, 1978.

[11] Carl E. Hewitt. Viewing control structures as patterns
of passing messages. Journal of Artificial Intelligence,
8(3):323–364, 1977.

[12] Richard Kelsey, William Clinger, and Jonathan Rees
(Editors). Revised5 report on the algorithmic language
Scheme. ACM SIGPLAN Notices, 33(9):26–76, 1998.

[13] WooYoung Kim and Gul Agha. Efficient support of
location transparency in concurrent object-oriented
programming languages. In Supercomputing ’95:
Proceedings of the 1995 ACM/IEEE conference on
Supercomputing (CDROM), page 39, 1995.


