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Abstract

Since the last ten years, simulations of living systems have had new perspectives
due to the inflow of biological data available on the one hand and the increase
of computer amount in term of calculus and memory storing on the other hand.
So simulation of biological processes can now be considered for large sets of
molecules not only with differential equations but also by modelling molecules
independently as with agent-based systems. In a large project about the study-
ing of the mitochondrial metabolism, MitoScoP[1], we have designed a generic
agent-based framework to test molecules behaviours where considering mean
behaviour (like with differential equations) is not well adapted. The implemen-
tation of this framework is done in Lisp and uses the McClim interface for the
graphical simulations.

Introduction

For several years, agent-based systems have been used for studying population
biology/ecology like predator/prey problems or epidemiological researches like
viral diffusions. Theses models are able to represent population level of organ-
isation but often deal with a small number of types even if there are many
instances of each. In another context, artificial chemistry tries to reproduce in
silico molecule behaviours at the atomic level. Similar agent-based frameworks
can be used to simulate ecology or chemistry and there are several examples of
such frameworks which are used for biological applications.

Metabolic processes are characterised by complex arrangements of heteroge-
neous entities. So modelling these processes at the atom level is out of our
reach and often not informative. A more appropriate abstraction level allows
to represent a complex system with the right level of description[7]. Agent-
based modelling driven by object oriented approach is a powerful tool for such
design. We have studied several enzymatic reaction chains and built a generic
framework using reactive agents to model molecules. We present a specific one



to design oxidation/reduction (redox) reaction chain which occurs inside the
mitochondrial respiratory chain[9]. After a quick presentation of the biological
context of our project, we will describe the agent model that we have designed
and how it is used to simulate the redox process which is one of the main pro-
cesses involved in metabolism. Finally we will discuss the advantages and the
limitations of this approach.

1 Modelling Metabolic Processes

Cell functions, like self-replication or energy generation, are the result of the
work of metabolic pathways. Metabolic pathways are sets of enzymatic re-
actions involving reacting molecules (also called metabolites) and catalysing
macromolecules (called enzymes). As these pathways are strongly connected,
the whole organism metabolism is a complex network often compared to “small
world network”. Organelles, like mitochondria, have their own metabolism made
of ten to twenty main connected functions (pathways). Modelling such set of
biological processes means to take into account more than fifty different types of
entities: metabolites or enzymes, each of them being present in several hundred
copies. But the working hypothesis that there is an homogeneous repartition of
the molecules inside the mitochondrial volume is not always verified and many
examples of different results between mean behaviours and local calculation are
reported [3][8].

Agent-based modelling allows to take into account localisation of the molecules
individually and to compute peer-to-peer interaction easily. If we examine the
case of a simple enzymatic reaction, the basis process is:

e if two molecules, an enzyme and a metabolite, are spatially close enough,
they can interact with each other.

e This interaction can be resumed by a chemical transformation of the
metabolite - the substrate - into another one - the product.

e At the end, the product is released and the enzyme is free to react again
with a new substrate.

e Of course the new product can react another time with another enzyme
and so on.

Agent-based design is a bottom-up approach very similar to the object ori-
ented approach and from now we will assume that agents will be considered as
objects in OO modelling. The different steps of modelling a biochemical process
can be described as:

e definition of the agent classes - reification step.
e description of the interaction rules between agents.

e description of the life cycle for all agents.



The life cycle in agent-based models is controlled by an algorithm which defines
the ordered list of operations that must be applied at each simulation step.

1.1 Agent model

The choice of the abstraction level for the agent model drives the choice of object
classes. In molecular biology the natural level of description is the molecule level
and as it is described above enzymatic reactions involves two types of molecules:
enzymes and metabolites. These two kind of entities share some characteristics:
molecular weight, spatial position, several details of description like databank
ID, bibliography references . ... These characteristics are put into a super class
called BioAgent. Enzyme and metabolite can be considered as catalysers and
reacting units. So this defines two subclasses of BioAgent which are Catalyser
and Reacting-Unit. The difference between these two classes is that only the
Catalyser needs to know the reaction rules and that reacting-unit instances
are simply under the influence of a “general” brownian movement.

These two subclasses are sufficient to express generic enzymatic reaction. To
simulate specific enzymatic processes it is needed to dynamically load descrip-
tions of different types of catalysers or reacting-units. In this case, the Lisp
property to easily generate new classes from data files allows us to obtain all
the needed classes “without additional cost in the code”.

This is an example of the simple macro which permits to generate all catalyser
classes by reading their names inside data file:

;5 3;Generic method to define biological type for enzyme
(define-bioagent-type catalyser (reacting-unit)
((active-sites :initarg :active-sites :accessor active-sites)))

;33 Creates an agent class corresponding to a biological type
(defmacro define-bioagent-grid (bioagent-type slots)
¢ (progn
(defclass ,(intern (find-agent-name bioagent-type))
(,bioagent-type bioagent-grid) ,slots)
(execute-when-defined (make-instance
(find-agent-symbol ’,bioagent-type)))))

The biological-grid-agent is a BioAgent placed in a 3D space.
The same kind of macro is done for the reacting-unit.

Interacting rules are organised as a list of accepted molecules for the reaction,
so for each catalyser a list of reacting-units which are accepted to react is done.



Random encounters with non reacting molecules are ignored. The list is part of
each catalyser class description and is loaded from the data file too.

1.1.1 Generic molecule behaviours

In biochemical simulation, all molecules are subject to brownian movement.
Brownian movement is a generic and “general” law that happen to all molecule.
Brownian movement is one of many molecules behaviour which depends upon
forces that occurs at the molecular level. These forces are usually summarised
in term of generic and “general” functions. These generic functions are attached
to the BioAgent and parametrised by attributes like molecular weights of the
different subclasses.

1.1.2 Life Cycle description

Multi-Agent system modelling supposes to give the list of actions to perform
for each agent for one step of simulation. At the higher level one must decide
if the system is synchronous or asynchronous. Many algorithms are based on
the guaranty that all the agents are visited before switching to the next step of
simulation. This kind of constraints is easily implemented with before or after
methods in Common Lisp functions. In general, first order functions can be used
to describe some characteristics concerning the whole system behaviour like the
well-known sequence of actions in agent system : perception (find neighbouring),
decision (try to find something to do), action (move, fire the reaction ...). This
sequence is the generic algorithm applied to each agent at each simulation step.
An agent visited during the life cycle must check its neighbouring to know if
some reactions must be fired. This task is devoted to the catalyser agents and
takes into account reacting-unit list defined by the catalyser agent type.

One of the interest of living system simulations is to observe for a long time the
system behaviour and to interact dynamically with it, so good level of interaction
between users and the program is crucial. We want to be able to disturb locally
the simulation, to reproduce pathological event which can happen, or in the
contrary to correct some undesirable phenomena as troubles induced by drugs
reactions. This is the second reason why we have chosen the Lisp environment
to develop our framework. The lisp interacting loop allows the user to suspend
simulation, to modify dynamically the program sequence, to analyse the system
state if it breaks down and to resume the simulation after some corrections.

1.2 Graphic interface for simulations

One of the main goal of multi-agent system is the observation of emergent phe-
nomena so graphic interface is required in order to observe the whole behaviour
of the system. The graphic toolkit McClim[11] (as Clim) supplies a collection of
presentation functions to program the interfaces which limits massively code
size to write down. Our framework has a simulation engine module without any
reference to the graphic interface and a module to manage graphics. This last



one only contains less than 600 lines of code to describe the whole interface:
menu, buttons, drawing window to show molecule behaviours and statistic win-
dow to observe concentration evolution. There is no doubt that this is a very
compact code. For example, a similar interface for showing interactions between
phospholipides (with only one type of agents) built in Java language by one of
our collaborators (with Java3d library), has required more than 1200 lines of
code.

2 The example of the redox reactions

We have used our agent framework to model redox reactions involved into a
specific mitochondrial pathway: the respiratory chain. These redox reactions
take place inside the Complex IIT enzyme. A redox reaction is characterised
by an electron exchange between two partners according to qualitative and
quantitative rules. A redox reaction can be divided into two parts: reduction
and oxidation. Reduction is the gain of electrons whereas oxidation is the lose of
electrons. To be precise, redox reactions correspond to changes in the oxidation
number that may not involve electrons (involving covalent bonds for instance).
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Figure 1: electron exchange between two molecules

Each molecule involved in a redox reaction is considered either in a reduced
state or in an oxidised state depending on the energy level separating it from its
stable state. This stable state is reached by giving or getting electrons. In the
case described by the figure 1, a molecule of iron, noted FeS, in oxidised state
meets an Ubiquinone molecule in reduced state - in this case this molecule is
called UQH2. The electron release/capture causes the state change of the two
partners: FeS becomes reduced and Ubiquinone oxidised i.e. UQ®*~. The rules
applied to fire this reaction are:

e qualitative rule: one molecule must be in oxidised state and the other
in reduced state,



e quantitative rule: the two molecules must exhibit a positive difference
of their reduction potential. The reduction potential is a value that gives
the energy needed to reach the stable state.

There exists reduction scales which give for each type of molecule the thresh-
olds (reduction potentials) at which this molecule switches its state from a re-
duced state to an oxidised one. One can note that some type of molecules can
have several reduction potentials. This is the case of Ubiquinone as we will
explain in the next paragraph. A redox reaction occurs if the oxidised molecule
has a higher reduction potential than the reduced one.

An agent-based system based on reactive agents is a simple way to simulate
metabolic processes like redox reactions. We will now present the retained model
to design such process and the rules used for simulation.

The agent-based model which has been designed uses a 3D continuous space

where the agents are located. The space and the distance between agents are
used in interactions evaluation. All the agents have a local perception of their
neighbourhood. A grid divides the space into neighbouring units which simplify
interactions computations.
The model is called open because of the variable number of agents during sim-
ulation. The continuous degradation and synthesis of molecules is a common
biological process. Since molecules are driven by chemical laws, the agents of
our model are reactive agents and not cognitive ones. As we need to take into
account several molecules the agent system is heterogeneous.

3 Results and discussion

This work reports an experience of using Lisp in a domain where it is not really
frequent to encounter it: graphic simulation of dynamic processes. At the pro-
totyping step, we have chosen this language because it seems to be well suited
to our needs: code easy to modify dynamically, easy to maintain (shorter code)
and set of tools like graphic libraries easy to use. Moreover in Lisp we can rely
on an efficient object oriented model (with CLOS [6][10]) which is a very impor-
tant element for research projects where many modifications and additions are
continually made. In that way, using interactive language allows us to quickly
write (and to quickly test) new modules.

The whole project MitoScoP contains also a databank to store knowledge and
a web site to give access to the databank. We have begun to develop a frame-
work with pathway tools [5] based on the Metacyc model[2] all written in Lisp.
An another MitoScoP module must contain mathematical equations to simulate
metabolism processes, mainly with differential equations, As this set of equa-
tions requires only classical equation solver, there is no more problem to use
Lisp unless the misgivings of mathematicians more accustomed to program in
Fortran language. To summarise, we can tell that this experience is conclusive
and there is no doubt that we will continue in that way.



Now however we need to try to develop more functionalities in our framework
and we start to test the limits of the different tools we have used. Graphic dis-
played must work with object in 3D space, we want to use OpenGL library in
order to do that. Of course it exists some bindings between Lisp and OpenGL
but not McClim. We participate to a project of writing a graphic engine in
CommonLisp and using OpenGL but it remains many things to do. In the next
months, we want firstly to test the OpenGL binding libraries and secondly to
work on the bindings between McClim and OpenGL.

Another question is the interactions between the simulation program and the
user. During a simulation, the Lisp loop has always something to do, i.e. to
apply the life cycle to all agents. So it is difficult to listen if the user asks to do
something, for example to interrupt the program, to change a parameter . ...
Using threads to implement that is possible but management of threads is not
completely standardised through the different architectures (Linux or Mac OS)
and implementation of Lisp machine. But one can note that this problem is
also encountered with another programming languages.

If we summarise this experience we can note that the greatest barrier to the
use of Lisp in our project is not the lack of Lisp tools but the non familiarity of
the different participants to this language. Into interdisciplinary projects, the
non-informaticians can have some knowledge in programming but only for the
most popular ones (in general Fortran or C) and so there are many resistances
to learn new one. In another way, there also exist several frameworks to develop
simulation examples, a very popular one in Multi-Agents community is NetL-
ogo [4]. Tt is able to build 3D simulations but as agent descriptions are done in
a specific and very simple language, complex descriptions stay out of reach in
NetLogo.

In conclusion despite the difficulties that we have noted, we will continue to
develop our Lisp framework because we can dispose of all the essential function-
alities and the quality of the produced code keeps the maintenance charge at
low level.
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