
LISP Hardware revisited

16. March 2006, Hans Hübner

Breakout Group Proposal to the 3rd European Lisp Workshop

LISP is not a perfect match for today’s computers. In order to make stock hardware
execute LISP code, complex compilers have to be used that make standard
computers emulate LIPSs’ model of computation. Progress in execution speed of
standard processors have made this approach feasible, but this approach also
carries a lot of complexity which makes it harder for a developer to fully understand
the system that she is working on.

This is not much of a problem if the LISP programmer is in a team of many, allowing
her to leave understanding the gory details of compiler and hardware technology to
the respective specialists – But if the LISP developer is an individual thriving to
control all aspects of her computer-implemented invention, the complexity of the
environment surrounding contemporary LISP implementations is indeed a problem.
Additionally, current computer systems follow an execution model that is radically
different from LISPs’. In order to fully grasp what is going on inside her program, the
LISP developer must not only understand LISP itself, but also the traditional von
Neumann execution model. Finally, LISP environments are too large to be deployed
in restricted environments like embedded systems due to the fact that their
computation model must be emulated by sequential programs.

It is in fact possible to directly execute LISP in hardware, and it is more a matter of
historic circumstance that LISP hardware is not available in the stores today.
Companies like Symbolics, LMI and TI have shown that specialized LISP machines
can be actually built – Even though those systems really did not natively execute
LISP, they were specially built to support LISP systems. The SCHEME-78 and
SCHEME-79 chips natively interpreted SCHEME in a binary form and have shown that
symbolic processing can be done directly, without the need for a von Neumann
system emulating the behavior. Given symbolic hardware that executes LISP
directly, the traditional sequential model is no longer a prerequisite to understanding
how to program, and in fact the expressive power of symbolic processing will make it
completely unnecessary for many developers to even try understanding sequential
systems at all.

The history of LISP hardware is generally being seen as a failure, but it seems to be
common understanding that the failure was not due to the technology being inferior
to the competition. Quite to the contrary, many of those who have used the
Symbolics Lisp Machine seem to feel that even current environments often don’t
even come close to what Genera had to offer – Let alone the fact that all current LISP
environments run on systems like Windows or Unix, which are totally foreign to
LISPs’ inherent concepts and need quite some wizardry to be understood.

One key aspect of why LISP machines failed is the fact that, at the time, developing
custom hardware was a very expensive process and not only required the
development of logic functions, but also the development of chip-design tools in
order to put the designed logic onto silicon. Advanced CAD tools were unavailable,
design rule checking was a manual and error prone process and turnaround times
from design to chip were high and very expensive. At the same time, integration
levels were low, with one million transistor functions on one chip being state of the
art.

LISP systems have always been off-mainstream, seeking their applications in
“advanced” fields like artificial intelligence and higher-order mathematics. Standard
applications like operating systems, tabular databases, word processing and
networks have been dominated by software written in sequential languages like C,
Pascal or Fortran. This is why the execution model of these languages dominated
development of new hardware in the past decades. In fact, being able to run GCC has
been one of the first fitness tests of a new CPU developed in the 1990ies. Unix has
been the predominant operating system, and getting Unix to run has been one of the
prime tasks scheduled early in the development cycle of a CPU.

Also, the fact that recursion and symbolic processing is harder to understand for
someone who has been exposed to the more traditional, sequential way of building
computers, may have been influential on the mainstream development towards
computers systems optimized to execute sequential code.

Then again, times have changed. The advent of cheap reconfigurable hardware
allows us to re-think the feasibility of building LISP machines. To build one, we will
not have to invent new CAD tools. We will not have to invent the basic mechanisms
needed to map Lisp to hardware. All that it takes today is some ancient papers
describing the architecture of a hardware LISP interpreter, a free synthesis toolkit
for a FPGA, an evaluation board and…. Lots of free time.

Breakout Group Agenda

This breakout group will be used to discuss how the goal, a LISP computer executing
LISP on hardware circuits, can be achieved. A list of topics to discuss includes:

- Can a full CL implementation be implemented, or does one need to constrain
the system to SCHEME?

- What gate count will be necessary, is a one-chip implementation for the CPU
feasible?

- How can the task be partitioned? What is the project’s time frame?

- How can standard IP cores be interfaced to the LISP system?

- Should the task start where SCHEME-79 finished, or have there been other
developments that can be built upon?

- What would be the architecture for a multimedia-able LISP machine?

Assorted links

http://opencores.org/ Free open source IP cores and
chip design

http://repository.readscheme.org/ftp/papers/ai-lab-pubs/AIM-559.pdf The Scheme-79 CPU

http://xilinx.com/ Producer of reconfigurable
logic chips

http://altera.com/ Another producer of
reconfigurable logic chips

http://shop.trenz-electronic.de/catalog/default.php?cPath=1 Ready-to-go FPGA
development kits

http://members.optushome.com.au/jekent/FPGA.htm John’s FPGA page

