Simulation of Quantum Computations in Lisp

Brecht Desmet, Ellie D’Hondt, Pascal Costanza, and Theo D’Hondt
Quantum computations

- Computation below the level of atoms
 - Postulates of quantum mechanics
- Qubits
 - Superposition
 - Entanglement
 - Measurement
- Quantum operators
 - Unitary evolution
 - Quantum parallelism
- Quantum algorithms
 - Shor’s algorithm
Quantum Simulator

- Why?
 - Lack of existing general-purpose machines
 - Perform experiments
 - That go beyond postulates of quantum mechanics
 - Instrument for communication between interdisciplinary research

- Problem?
 - Simulation on classical machine has an inherently exponential complexity
QLisp in a nutshell

- Simulation as a model
 - Thinking in terms of mathematical concepts
- Overrule postulates of quantum mechanics
 - Modify quantum states
- Compact expressive language
 - Macro extension of Lisp
- Education opportunities
- Software optimizations
 - Prune time and space complexity for small problems
Algorithm of Deutsch-Jozsa

- (defun deutsch-jozsa (n unitary-fn)
 "returns T if unitary-fn is constant"
 (let* ((_phi1_ (make-qureg n (hadamard-init)))
 (_phi2_ (qc-apply
 (make-qureg 1 (standard-init 1)) (-h-)))
 (_psi_ (funcall unitary-fn
 (tensor-items _phi1_ _phi2_))))
 (constant-qureg-p
 (collapse-basis
 (qc-apply-range _psi_ -h- 0 (1- n))))))
Questions?