
Some Lisp tools for musicology

Research aids for an Electronic Corpus of Lute Music

David Lewis∗, Christophe Rhodes†

Centre for Cognition, Computation and Culture
Goldsmiths College, University of London

New Cross, London, SE14 6NW

28th June 2006

Abstract

We present the tools that have been developed in the course of implementing a resource to assist

in musicological investigation of lute music. We discuss the use we have made of current Lisp-based

technologies in our applications, and the modifications and customizations we have needed to make.

Our tools both have the current ability to service musicological queries, and have an evident path

for further development to enhance their utility.

1 Introduction

There is a long history of association between musicology and computer technology. The term ‘Music
Information Retrieval’ dates back at least as far as 1966 [1], and the earliest computer-based music
encoding and analysis initiative, centred around the works of Josquin des Prez, was started by Lewis
Lockwood and Arthur Mendel in Princeton at 1963 [2]. It is perhaps surprising, therefore, that the
impact of computing on the discipline has been negligible. One reason for this is the complexity of some
of the tasks required: music analysis is frequently very difficult or even impossible to specify algorith-
mically and artistic, interpretative or creative processes pose special challenges. This is not, however,
the case for all musicological tasks, and probably the greatest impediment to routine, productive use of
computers for musicology lies in a severe lack of encoded data.

Lisp’s history predates even the use of computers in musicology; the vibrancy of the user community
has ebbed and flowed over the last 45 years, but it is relatively clear that Lisp is emerging from the
downturn of the AI Winter: over the last five years, many developments (including implementation
maintenance, library development, and the continuation of Moore’s law) have made it easier for users
to run powerful software on their desktop computers.

The remainder of this paper describes a new application of Lisp to musicology: in section 2 we
discuss previous applications of computer technology to musicological tasks, and introduce our own
field of investigation; section 3 describes our present and future applications of Lisp to the field, and
we conclude in section 4.

2 Computational Musicology

Given the long history of association between musicians and musicologists and computer technology, it
may seem surprising that computational musicology should still suffer from a lack of data. There are

∗d.lewis@gold.ac.uk
†c.rhodes@gold.ac.uk

1

many large resources of recorded music in the form of audio files, and websites such as the ‘Classical
Music Archives’ [3] store a significant number of MIDI files, but here our problems start to become more
apparent. Much existing musicology operates on some sort of structured, graphical musical notation,
usually a score; automatically extracting the high-level constructs required from an mp3 or wav file
remains a difficult problem. MIDI operates in a more suitable domain, specifying pitch and rhythm
information directly, but is still lacking in many notational features vital for our purposes.

An important resource for musical scores is the MuseData collection based at the Center for
Computer-Assisted Research in the Humanities at Stanford University[4]. This data-set contains in
excess of 4,000 movements, most of which are by Bach, Handel, Telemann, Haydn, Corelli, Vivaldi,
Mozart or Beethoven. Despite the size of the resource, there remain several methodological difficulties
with using this collection as anything more than a test set for new algorithms.

Firstly, the scores presented do not in any way represent the original state or states of the music.
For copyright reasons, the creators of the MuseData collection have been unable to use new critical
editions. Lacking the time and resources to transcribe from contemporary sources either, they have
resorted to relying on the best available nineteenth-century editions. These are, unfortunately, of limited
scholarly value – many vital sources have come to light in the intervening period, and even in the more
scrupulous editions of the period, editorial ‘corrections’ and ‘updatings’ to the music do occur. To make
historically-informed observations based on these is thus problematic.

An additional issue is the selection of music. Although drawn predominantly from the early eigh-
teenth century, works in the data-set range from the mid-seventeenth century to, in one case, the early
1890s. The selection of composers is largely limited to the traditional canon of ‘geniuses’, including no
composers who are not Italian or German. Since a basic element of any attempt to draw historically
valid conclusions from music must be a representative sample of works from the time, this practice of
selecting pieces and composers considered to be of exceptional style or quality and omitting those whose
posthumous reputation does not match their contemporary influence can only reduce the usefulness of
the resource.

2.1 Lute Music

It is in this context that the Electronic Corpus of Lute Music (ECOLM) must be considered, since
music for the lute provides a population of music sources that is coherent, chronologically bounded and
of great historical and musical interest. For a period spanning from at least the end of the fifteenth
century till the latter half of the eighteenth, the lute was one of the most popular instruments in Europe,
with only keyboard instruments as substantial competitors, and there are estimated to be nearly 60,000
extant pieces for the instrument[5]. That the lute’s rôle in music history is consistently underestimated
is partly due to the miscellaneous nature of many of its sources, but perhaps mostly due to its notation
which bears little resemblance to that used by most other classical music.

2.2 Tablature and TabCode

Lute music is written using one of several varieties of tablature notations, which give players physical
information about the strings to play, where to put their fingers and how long to wait between one
event and the next. The music progresses left to right, from the top system1 of a page to the bottom.
On the whole, the notation is sequential in nature, having few symbols that overlap from one chord
to another and almost no way of indicating different rhythmic patterns occurring simultaneously (an
important feature of modern staff notation).

This attribute of sequential ordering and discrete separation of events makes the encoding of tabla-
ture into a text string a more straightforward process than it is for most other musical notations, and
several schemes have been devised for this. We use TabCode[6] for our encodings, in which discrete
events are translated into whitespace-separated ‘tabwords’2. Characters representing rhythm signs,

1A musical line.
2‘Whitespace’ here includes line breaks.

2

M(C/)

Hd1d2e3f4f5d6

Ed1d2e3f4

d6

e2

d2d3d4

|

Figure 1: The first bar of a prelude attributed to the sixteenth-century composer Laurencini, ‘PRæl.
Laurenc.’, in Jean-Baptiste Besard, Thesaurus Harmonicus (1603), f.12v, and its TabCode encoding.
For a transcription to staff-notation, see Figure 4 (right).

where present, begin the tabword, followed by letter-number pairs for each symbol representing a fret
and a course3 (Figure 1 shows an example of a tablature and its transcription).

2.3 ECOLM and the identification of tasks

The Electronic Corpus of Lute Music was not funded solely in order to provide a resource to increase
the availability and understanding of lute-related music, although this is clearly a central goal. It was
explicit from the start that another objective was to explore computer tools for musicological and related
work on large music corpora.

Several important tasks in the context of ECOLM were identified. Not all have involved Lisp in their
solution, nor is it intended that they should; nevertheless we give a general overview of them, and then
deal in detail with those that do. The tasks divide broadly into 4 categories: music input, which can be
manual – TabCode was designed to be input using a simple text editor – or automated, and we have been
involved in the development of OCR tools for lute tablatures4; editing and annotation, which might
include corrections, editorial intervention, cross-references with other versions of the same piece, etc.;
presentation, which primarily consists of web application development, but also includes transcription
from tablature to score and the co-ordination of different visualisations of the music: perhaps a facsimile
of the source with an edition for comparison, or the presentation of divergences between different sources;
finally, we have music processing, including, with various degrees of automation, Music Information
Retrieval and musical analysis at the level of the individual piece or of an entire corpus.

The bulk of our discussion below concerns the software developed to facilitate editing and entry.
This is partly because this is the most intensely developed software to come out of the project and
partly, as we shall demonstrate, because it forms the foundation on which further developments may
be built.

3 Applications

3.1 Editing and entry

The project to write an editor for TabCode arose from dissatisfaction with the previous system of
data entry by text editor with subsequent rendering and editing using an approximately WYSIWYG
graphical interface, Tim Crawford’s TabProcessor5. Since these two processes were necessarily distinct
– the TabProcessor had no text view and limited content-editing functionality – the procedure could be

3A string, or a pair of strings tuned to similar pitches and struck together.
4Since these were built with Python and C++ (using the Gamera[7] toolkit) we do not discuss them further.
5A Macintosh program written in C for Mac OS 7.6 and not updated since c. 1997. This could read and write TabCode,

although its primary data-entry method was by mouse and keyboard.

3

Figure 2: A screenshot of the editor component of our suite of tools. The left-hand (partially obscured)
window is the text editor component, and contains some TabCode, which is rendered in the right-hand
(front) window. Note that the first bar in the rendered output corresponds to Figure 1.

cumbersome. What was required was a system that retained the direct text editing – not only because
this method is quicker for most entry tasks, but also because the text contains more information than
a graphical representation can – but which still provided instant visual and audible feedback.

The application that we describe here (see Figure 2 for a screenshot) is written with Climacs, an
emacs-like editor with its user interface implemented using the Common Lisp Interface Manager (CLIM)
[8, 9, 10]. Although Climacs includes a syntax analysis module with various advanced parser frameworks
[11], the comparative simplicity of TabCode and the nature of our requirements (such as a correct parse
tree of the whole buffer after each edit, for use in display) led us to implement a combined lexer and
parser hooking in to Climacs’s buffer update protocol.

3.1.1 Parsing

Since the parser is required to operate after every editing action, it will frequently encounter half-
completed tabwords that formally give rise to parse errors. On such an error, the parser preserves
the partial parse leading up to the error, advances to the nearest lexically following whitespace and
resets the analyser’s state. Syntactically invalid code is coloured in red to alert the user without direct
interruption.

The parser generates a sequence of tabword objects (corresponding to the ‘tabwords’ described
earlier) from the text in the editor buffer, incorporating previously generated sequences if it can prove,
based on markers showing the extent of the text region ‘damaged’ by user interaction, that the parse
for that sequence is unchanged.

The sequence of tabwords is then parsed for ‘system breaks’ and ‘page breaks’. Since we attempt to
encode the source as it appears on the page, the points at which the music spans systems or pages are
recorded in the TabCode. This provides very useful higher levels of structure with which to operate, as
we shall see.

3.1.2 Incremental redisplay

Especially on slower machines, redrawing a long piece can have a significant effect on application speed.
Climacs’s incremental-redisplay functionality checks the identity of objects to be drawn against that
of previously drawn objects in its output records. If the object has already been drawn, it will not be

4

redrawn. By providing the incremental-redisplay with a method for drawing whole systems, we can
use this functionality to redraw only those that have changed since the last drawing operation. Within
this system-drawing method, is a method that is also called with incremental-redisplay for drawing
tabwords. Thus the amount of redrawing can be minimized quite precisely.

There is a trade-off to be had, however. The incremental-redisplay functionality also checks to
see if a redisplay needs to update previously drawn objects if they overlap an output record which has
moved or been erased. This involves testing all moved or erased output records for overlap with all other
output records, taking (as currently implemented) O(n3) time for cases where the output records are
irregularly sized and not aligned to baselines. Our solution for this has been to provide our own method,
specialised on the tablature display window, that compares the bounding-rectangle of the moved and
erased records with all other records, resulting in a more manageable O(n). See Appendix A for details.

3.1.3 Displaying fonts

The CLIM specifications are somewhat elliptical on the subject of font abstractions. CLIM protocols for
requesting specific fonts exist, such as make-device-font-text-style; however, there is unfortunately
no specification for how this request is serviced, nor how the programmer should identify a given font.
While a standard X11 font (along with all the resources required to display text and calculate text
bounding boxes) is uniquely identified by its resource string6, using a TrueType font on an X11 display
requires a pathname to the font file, not simply a string; using a Postscript font for generating printable
output requires two pathnames: one for a file containing information about individual glyphs, and one
for a file containing the font’s metrics (properties of individual and combinations of glyphs such as
kerning, advance width and baselines).

We have implemented device-font-name structures to deal with this problem: rather than assum-
ing that a string names a device font, we provide a function per CLIM backend (X11, freetype and
Postscript) for making an opaque object which contains enough information to identify all the resources
needed for using a given font. This is not necessary for the standard text fonts, which McCLIM (the
implementation of CLIM that we use) maps to the Bitstream Vera fonts itself in its X11/freetype back-
end in a manner transparent to the programmer; however, it enables us to render tablature using fonts
which have been designed after historical sources for the graphical elements (see the right-hand portion
of Figure 2).

Additionally, the editor application refers to these fonts in a manner which allows it to function
irrespective of its filesystem location; we use the sb-ext:*core-pathname* extension from Steel Bank
Common Lisp (SBCL) to search for the font files relative to the delivered application as well as in
system-standard locations.

3.1.4 Playback

The editor was developed for deployment, initially at least, on Apple Macintosh computers running OS
X, so MIDI playback was developed in the first instance by using Apple’s C API for CoreMIDI. This
is capable of giving instant audio feedback, playing either extracts of the piece in the buffer or simply
the chord on which the cursor is located. A Linux implementation of this functionality, using external
processes, is straightforward.

3.2 Future work

3.2.1 Text criticism and source studies

TabCode as it stands is capable of encoding one view of one text of a piece of music. If we wish to be
involved as editors or if we wish to compare the presentation of the same piece in a number of sources,
we need a way of enriching the code to represent these aspects of text criticism.

6e.g. "-adobe-courier-bold-r-normal--10-100-75-75-m-60-iso10646-1".

5

Figure 3: Two modes of (web) presentation for tablature generated using our system – designed for
and described in [14] – give views of a Bourrée by Weiss that occurs, with differences, in four different
sources. In the example on the left, points of discrepancy are coloured based on the number of sources
that disagree with the presented version, with darker rectangles indicating more controversial readings.
In the right-hand example, all points of disagreement are given in parallel with a reference text, this
gives more detail, but takes more space (the music presented is that of the first system of the left-hand
example). In both cases, the reference text is selected by the user.

Preliminary work in association with Frans Wiering has resulted in the initial development of
TabXML, an XML implementation of TabCode incorporating a more general text-critical mark-up for
time-sequence ordered music7, conforming (largely) to Text Encoding Initiative (TEI[12]) guidelines[13].
These developments pose a significant challenge for the tablature editor’s way of operating, since the
textual editing of XML is not only time-consuming, but it also provides more opportunities for local
editing to have dramatic global effects.

Currently, our work with TabXML has limited the role of the tablature editor to generating graphics
from TabCode arising from XSLT processes (see below). The editor’s future utility must be partly
judged by its ability to support some degree of enriched TabCode, whether that enrichment is provided
by XML or some other means.

3.2.2 Web delivery

Presenting the information from the corpus to a distributed user base requires web site generation.
Currently, a PHP web application takes data from the MySQL database and elsewhere and presents it to
the user. In the case of tablature, a socket is opened to a waiting Lisp process, and the relevant TabCode
is piped through. The web application then receives the required result, either a PNG (generated using
McCLIM’s postscript backend and ghostscript tools) or a MIDI file.

The data may then be presented in a manner appropriate to the current context. Figure 3 gives two
examples of different modes of presentation for this, illustrating ways of viewing deviations between
sources, as extracted from TabXML using XSLT.

For historical and practical reasons, ECOLM’s database-handling, text-critical processing and tab-
lature rendering these have been developed separately, and using different technologies. Clearly, there
is a strong argument for integrating these. Not only would this enable more efficient caching, simpler
maintenance and more flexibility of presentation, but it would also reduce the barrier between the data
in TabCode and that in the rest of the database.

7The issue of music encoded one part at a time has not yet been fully explored.

6

Figure 4: An extract as rendered in Sibelius automatically from MIDI (left) and with some manual
intervention (right). The source is the first two bars of the prelude used in Figure 1. Important elements
of staff notation, such as note duration, pitch name and key are absent from lute tablature, so näıve
transcription (as on the left) is of limited use.

As the sophistication of the TabCode processing increases, the facility for turning our software to
searches and to musical analysis increases. Some preliminary work has already been presented (in [15],
with a more general description in [16]), but this made no direct use of the ECOLM database. Since
this database contains information about dates, people and places, where they are available, for all the
music in the corpus (and much that is not), computer-based music information retrieval (MIR), with
correlations drawn from musical and extra-musical data becomes an exciting possibility to explore.

3.3 Transcription to staff notation

Lute tablature is a notation that can be read fluently by a very small proportion of those who might
be interested in the musical content of our corpus. We have already seen that basic MIDI output is
possible, and this might make it seem that staff output would be a straightforward development from
this.

Figure 4 (left) shows the result of importing one of the MIDI files we generate from TabCode into
Sibelius – one of the most popular pieces of music engraving software on the UK market. This is wholly
inadequate as staff-notated music, as the structure of the music is not evident from the staff notation.
The problem arises from the fact that tablature notation specifies neither pitch names nor durations
for notes, two elements that are essential elements of staff notation; Sibelius is being forced to make
decisions about these elements, and defaults to a set of internal rules for deducing these.

Pitch naming and spelling is a music-theoretic construct and, as such, can be deduced from a piece
in which only absolute pitch is given. Some considerable recent success has been achieved using David
Meredith’s ps13 family of algorithms [17] for this. The algorithm is known to outperform others in
more mainstream musical realms, but appears also to be effective even in music from earlier periods.
Analysing duration, and consequently voicing information, remains a challenge for the future.

Once transcriptions of sufficient quality are possible, we hope to use Robert Strandh’s ongoing
CLIM-based score-editor project, GSharp, to enable the direct visualisation of passages of tablature
from within the editing environment and its presentation in modern score notation over the web.

4 Conclusions

We have presented a set of tools that we have developed to assist musicological investigation of a
historically important repertoire. The majority of these tools have been developed using Lisp, and their
development has itself spurred improvements in the libraries that they are built on. There remains
interesting work to be done in the future, both in refining and improving the existing tools and in
their application to new musicological questions; we believe that the quality of current Lisp software is
sufficient to enable us to perform this work with good efficiency.

All software discussed in this paper is available under Free Software terms: SBCL, CLX, McCLIM
and Climacs from their respective project homes; the TabCode parser and its integration into Climacs

7

(as well as the modifications to the Gamera optical document recognition framework) from the ECOLM
project home at http://www.ecolm.org.

5 Acknowledgements

We thank Alastair Craft for his assistance in producing figures for this paper. D.L. and C.R. are
supported by AHRC grant B/RE/AN9717/APN15559 and EPSRC grant GR/S84750/01 respectively.

References

[1] M. Kassler, “Toward Music Information Retrieval,” Perspectives of New Music, vol. 4, pp. 59–67,
Summer 1966.

[2] J. Morehen and I. Bent, “Computer Applications in Musicology,” The Musical Times, vol. cxx,
pp. 563–6, 1979.

[3] Classical Archives, LLC, “Classical Music Archives.” http://www.classicalarchives.com, 1994–
.

[4] W. Hewlett et al., “MuseData: An Electronic Library of Classical Music Scores.” http://www.

ccarh.org, 1984–. From Center for Computer-Assisted Research in the Humanities.

[5] A. J. Ness and C. A. Kolczynski, “Sources of lute music,” in The New Grove Dictionary of Music
and Musicians (S. Sadie and J. Tyrrell, eds.), vol. 23, pp. 39–63, London: Macmillan, 2001.

[6] T. Crawford, “Applications Involving Tablatures: TabCode for Lute Repertories,” Computing in
Musicology, vol. 7, pp. 57–59, 1991.

[7] M. Droettboom, K. MacMillan, and I. Fujinaga, “The Gamera framework for building custom
recognition systems,” in Symposium on Document Image Understanding Technologies, pp. 275–86,
2003.

[8] S. McKay, “CLIM: The Common Lisp Interface Manager,” Communications of the ACM, vol. 34,
no. 9, pp. 58–59, 1991.

[9] R. Strandh and T. Moore, “A Free Implementation of CLIM,” in International Lisp Conference,
(San Francisco), Franz Inc., 2002.

[10] R. Rao, W. M. York, and D. Doughty, “A guided tour of the Common Lisp interface manager,”
ACM SIGPLAN Lisp Pointers, vol. 4, no. 1, pp. 17–37, 1990. Updated by Clemens Fruhwirth,
2006.

[11] C. Rhodes, R. Strandh, and B. Mastenbrook, “Syntax Analysis in the Climacs Text Editor,” in
International Lisp Conference, (Stanford), 2005.

[12] The Text Encoding Initiative Consortium, “TEI: Yesterday’s Information Tomorrow.” http://

www.tei-c.org, 2005.

[13] F. Wiering, “Creating an XML vocabulary for encoding lute music,” in Proceedings of the XVIth In-
ternational Conference of the Association for History and Computing, Amsterdam, 14-17 September
2005, 2005.

[14] F. Wiering, T. Crawford, and D. Lewis, “Digital Critical Editions of Music: a multidimensional
model,” in ICT Methods Netword Expert Seminar: Modern Methods for Musicology (T. Crawford
and M. Deegan, eds.), (London), in press, 2006.

8

[15] M. Gale and D. Lewis, ““La battaglia”: a computer-assisted approach to an extended musical
family.” Presented at the 51st Annual Conference of the Renaissance Society of America, April
2005.

[16] D. Lewis, T. Crawford, G. Wiggins, and M. Gale, “Abstracting Musical Queries: Towards a mu-
sicologist’s workbench,” in Computer Music Modelling and Retrieval: Third International Sympo-
sium, Pisa, Italy, 2005 (R. Kronland-Martinet, T. Voinier, and S. Ystad, eds.), Lecture Notes in
Computer Science, Springer, forthcoming, 2006.

[17] D. Meredith and G. A. Wiggins, “Comparing pitch spelling algorithms,” in Proceedings of the Sixth
International Conference on Music Information Retrieval (ISMIR), 2005 (J. D. Reiss and G. A.
Wiggins, eds.), pp. 280–287, 2005.

9

x

y

Figure 5: A rectangle set. This arrangement of rectangles illustrates the worst case for incremental
redisplay: for x − y bands, and 2k rectangles, there are more than k bands having an average of k

intervals in their interval sums, and by the figure’s symmetry, there is no advantage to y − x bands.
Thus the space requirements for the data structure are O(k2).

A Incremental Redisplay

A.1 Interval Sums

An interval is a tuple (x, u), representing the co-ordinate range [x, u]. An interval sum I is a sequence
of co-ordinates (x0 u0 ... xi ui ...), representing the sum of the intervals ⊕i(xi, ui); for instance, the range
defined by {x : 0 ≤ x ≤ 2 ∨ 5 ≤ x ≤ 7} is represented by the sequence (0 2 5 7).

As implemented in McCLIM 0.9.2, every binary interval sum operation (union, intersection, differ-
ence) has the same complexity8, and is described in algorithm 1. In that description, ta (tb) is a boolean
representing whether we are considering a point inside or outside interval sum A (B); c0 if non-null is
the start point of an interval in the result interval sum.

Denoting the number of intervals in an interval sum I by |I|, there are 2(|A| + |B|) entries in the
lists representing the interval sums, each of which must be processed in algorithm 1. Therefore, the
complexity of interval sum operations as implemented in McCLIM is O(|A| + |B|).

A.2 Bands and Rectangle-Sets

A band β is a tuple (yj , Ij). A rectangle set is a list of bands, representing the region S such
that (x, y) ∈ S if and only if x ∈ Ij for y ∈ [yj , yj + 1]. For example, the region of the plane
consisting of two unit squares, centred at (0.5, 0.5) and (2.5, 3.5), would be represented as the list
((0 (0 1)) (1 nil) (3 (2 3)) (4 nil)); the union of this region and another unit square centred
at (4.5, 3.5) would be represented as the list ((0 (0 1)) (1 nil) (3 (2 3 4 5)) (4 nil))

Denote the coordinate of a band β as y(β), and the interval sum as I(β). Then, eliding some details
of canonization and edge cases, a rectangle-set operation is carried out using algorithm 2. There are
O(|R|) bands in each rectangle set (see figure 5 for an example construction demonstrating this), each
of which contains O(|R|) intervals in its interval sum. So the complexity of a rectangle set operation is
O((|R1|+ |R2|)

2).

8it would probably be trivial to optimize common cases of intersection and difference.

10

Algorithm 1 Interval sum operation isum-op

ta ← 0, tb ← 0, c0 ← nil
while A, B not both empty do

if first(A) = first(B) then

ct ← first(A)
tA ← tA, tB ← tB
pop from A, pop from B

else

ct ← minI(first(I))
C ← argminI(first(I))
tC ← tC
pop from C.

end if

if boole(op, ta, tb) ∧ c0 is not nil then

accumulate the interval (c0, ct)
c0 ← nil

else if boole(op, ta, tb) ∧ c0 is nil then

c0 ← ct

end if

end while

return accumulated interval sum

Algorithm 2 Rectangle Set Operation

a← nil, b← nil, z0 ← nil
while A, B not both empty do

I ← isum-op(op, a, b)
accumulate (z0, I)
z1 ← minC(y(first(C)))
if z1 = y(first(A)) then

pop from A
end if

if z1 = y(first(B)) then

pop from B
end if

a← I(first(A)), b← I(first(B))
end while

11

A.3 Incremental Redisplay algorithm

The critical loop in incremental redisplay is building the region over which to replay the output history.
This is done by looping over output-records which need to be redrawn as part of the redisplay due to
some other record which used to overlap with it having been moved (move-overlapping in Algorithm
3) or erased (erase-overlapping), performing a region-union rectangle set operation at each stage.
Since each rectangle set operation is O(n2), the overall complexity in building the final data structure

is proportional to
∑N

n n2, or O(N3). Note also that after building this data structure which is O(N2)
in space (see figure 5), there is another step, replaying the output history in that region. This involves
K region-intersection computations with this data structure, which has a time complexity of O(KN2),
comparable with the time spent building the structure in the first place.

It should be noted that the current implementation does not perform poorly for all applications.
In particular, for ordinary text or other non-intersecting small data (such as traditional GUI widgets),
the O(N3) case is not typically reached. However, with our complex tablature layout (with multiple
overlapping graphical elements: see Figure 2), it was necessary to customize incremental redisplay to
achieve acceptable performance.

A.4 Customization

We customize the incremental-redisplay generic function for display on the window displaying the
rendered tablature: this method implements the generation of a conservative (that is, larger than strictly
necessary) region for replaying the output history.

The use of clim-internals prefixes in Algorithm 3 is not problematic, as the functions called could
easily be replaced by portable code; however, the tabcode-window-stream class is at present a subclass
of a McCLIM-internal class, clim-internals::window-stream. We have not investigated how much
work it would be to remove the dependency on this internal class.

Algorithm 3 Customized incremental-redisplay for the tablature display.

(defmethod incremental-redisplay

((stream tabcode-window-stream) position

erases moves draws erase-overlapping move-overlapping)

(declare (ignore position))

(let ((history (stream-output-history stream)))

(with-output-recording-options (stream :record nil :draw t)

(loop for (nil br) in erases

do (clim-internals::erase-rectangle stream br))

(loop for (nil old-bounding) in moves

do (clim-internals::erase-rectangle stream old-bounding))

(loop for (nil br) in erase-overlapping

do (clim-internals::erase-rectangle stream br))

(loop for (nil old-bounding) in move-overlapping

do (clim-internals::erase-rectangle stream old-bounding)))

(loop for (r) in moves do (replay r stream))

(loop for (r) in draws do (replay r stream))

(let ((res +nowhere+))

(loop for (r) in erase-overlapping

do (setf res (bounding-rectangle (region-union res r))))

(loop for (r) in move-overlapping

do (setf res (bounding-rectangle (region-union res r))))

(replay history stream res))))

12

