Integrating Foreign Libraries in Common Lisp:
Best Practices

Rudi Schlatte

Joanneum Research

June 4, 2006

Abstract

We explore some of the challenges in integrating foreign libraries
into Common Lisp. While generating library bindings automatically
from header files and annotations can take care of some basic tasks,
an API that integrates well into the language and provides the user
with familiar patterns of usage must still mostly be implemented by
hand. We illustrate some best practices and common pitfalls following
the example of cl-redland, a CL binding for the Redland RDF library.

1 Introduction

In recent years, Common Lisp (CL) enjoyed an upswing in popularity. Re-
cent developments in software practices have revalidated Lisp’s approaches,
such as dynamic typing and interactive development. In contract to typical
scripting languages, CL sports a robust ANSI standard and multiple imple-
mentations (both open-source and commercially supported), most of which
have highly optimizing native-code compilers.

Hence, the situation described by Gabriel [4, page 192] has been mostly
corrected:

Lisp was too big and too slow for real applications. Applica-
tions needed to comprise a mixture of Lisp and other code, and
the membrane between the two languages had to be thin |[...]

Moore’s law took care of the “too big and too slow” part — a typical Com-
mon Lisp system runs very well on typical “consumer” machines and needs
fewer resources than, e.g., the Java runtime from Sun. But communication
between Lisp and programs or libraries written in other languages is still a
concern. Common Lisp the Standard does not prescribe a way to call out
to foreign libraries written in the host system’s native language and calling
conventions (today, normally C).

Nevertheless, no current implementation of Common Lisp is as closed
off as reading the standard suggests — all major implementations provide a
way to connect to the outside world via the network or calling out to foreign
libraries, and various compatibility layers exist that provide a common API
for these functions across implementations.

In this paper, we will present some “best practices” that were formu-
lated during the development of cl-redland, a Common Lisp binding of the
Redland RDF toolkit [7]. Redland is a library for the RDF (Resource De-
scription Framework) data exchange and description format [6] that forms
the basis for the semantic web. Redland is written in portable C and con-
sists of a parser for various RDF syntaxes, an engine for the SPARQL query
language and backends for storing RDF triple graphs in-memory, in files and
in various database engines.

Section 2 describes the various options of integrating foreign libraries in
Common Lisp implementations, while section 3 explores the design issues
that need to be solved to give the library user more than the basic, low-level
building blocks of an interface.

2 Foreign Function Interfaces

Generally, a “foreign function” is a function that is implemented in a differ-
ent language than the main program. A foreign function interface makes it
possible to call foreign functions (and access foreign variables) from Lisp.

Since a foreign function interface is not part of the ANSI standard for
Common Lisp, implementations have come up with different ways of calling
foreign functions. Luckily, there are compatibility libraries that implement
a common layer atop the foreign function interfaces of various CL imple-
mentations.

For cl-redland, we chose CFFI [2], a library that supports the majority
of Common Lisp systems, both commercial and open-source, and integrates
well into the Lisp software ecosystem. It has an asdf [1] system defini-
tion, hence can be automatically loaded by other systems using asdf, and
can be installed via asdf-install. Another good compatibility layer for FFIs
is UFFI [10]. CFFI was chosen because it supports slightly more imple-
mentations and, crucially, provides portable interface for hooking into the
implementations’ garbage collector.

Using a specific implementation’s FFI was not considered, since cl-redland
aims to be portable and useful across implementations.

2.1 Generated Versus Hand-Written Bindings

The first (but not the only) step in integrating the functionality of a foreign
library in a Common Lisp system is writing the bindings for the foreign
functions and foreign global variables. This is largely a mechanical task — so

much so that there are programs to generate the code, for example SWIG [9].
Generated bindings can save the programmer some typing work, but the
bindings still have to be adjusted manually in most cases (see subsection 2.2
for one reason why).

In this section, we use as an example a small part of the Redland APT —
the initialisation and termination of the library via the following functions:
typedef librdf_world;
librdf_world* librdf_new_world (void);
void librdf_free_world (librdf_world *world) ;
void librdf_world_open (librdf_world *world);

A first, hand-written version of this part of the api looked like this:
(defctype librdf-world-pointer :pointer)
(defcfun-with-checked-alloc "librdf_new_world"

librdf-world-pointer)
(defcfun "librdf_world_open" :void

(world librdf-world-pointer))
(defcfun "librdf_free_world" :void

(world librdf-world-pointer))

Since redland already uses SWIG to generate bindings to various lan-
guages and ships with a Redland.i SWIG interface file, it was decided to
use the CFFI bindings generated by SWIG as a starting point for cl-redland.

The equivalent bindings, as produced by SWIG:

(defcfun ("librdf_new_world" librdf_new_world) :pointer)

(defcfun ("librdf_free_world" librdf_free_world) :void
(world :pointer))

(defcfun ("librdf_world_open" 1librdf_world_open) :void

(world :pointer))

Cffi’s defcfun macro by default generates “lispified” identifiers (1ibrdf _
world_open becomes librdf-world-open). The generated SWIG bindings
take extra steps to avoid this conversion; this is a good thing, since this way
the low-level lisp-side functions have the same name as their C counterparts.

Some small adjustments had to be made to the generated bindings, but as
a whole the decision to use SWIG instead of hand-written low-level bindings
has paid off and saved the implementor some hours of typing boilerplate
code.

2.2 Dealing with Pointer Ownership

A problem that can be solved neither by automated generation of bindings
nor by mechanically transcribing C header files is the ownership of pointer
return values of C functions. C function declarations do not provide informa-
tion on whether the caller is expected to call free on the returned pointer.

For example, here is the C function to obtain the textual representation of
a Redland URI object:
unsigned char* librdf_uri_to_string (librdf_urix uri);

And here is the C function to obtain the literal from a node:
unsigned char* librdf_node_get_literal_value

(1ibrdf_node *node) ;

One of these functions returns a freshly-malloc’d string that the caller
must free, the other one returns a shared string that must not be modified
or deallocated by the caller.

The documentation or C source code must be consulted to determine
the needed behaviour of the caller of a specific C function. Except with
some sort of source code annotation, this information can not be known by
inspecting the header files alone.

With CFFI, return values that must be deallocated by the caller can be
handled by defining another datatype. The following datatype was used in
cl-redland:

(defctype caller-owned-string :pointer)

(defmethod translate-from-foreign
(value (name (eql ’caller-owned-string)))
(progl (foreign-string-to-lisp value)
(unless (null-pointer-p value)
(foreign-free value))))
With this datatype, the librdf uri_to_string foreign function is de-
fined as follows:
(defcfun ("librdf_uri_to_string" librdf_uri_to_string)
caller-owned-string
(uri :pointer))

3 Implementing a Lispy API

Creating FFI bindings for a C library is only the first step. Without higher-
level Lisp constructs, the code using the library will be as prone to exhibit
memory leaks and crashes due to programmer errors as the equivalent C
code. The library user should not have to worry about deallocating memory
by hand or about type-safety issues. This section describes how the low-level
C-style constructs should be wrapped to produce an API that is pleasing to
the Lisp programmer.

3.1 Exception Handling

Typically, foreign functions signal failure via a special return value. The
Lisp-style API should check for failed foreign function calls and raise an
appropriate exception. It is recommended that the library build its own

hierarchy instead of just calling error with a string argument — otherwise
the library user would have to resort to string comparison if he wants to
handle a specific condition.

(define-condition redland-error (error)

0)

(define-condition allocation-error (redland-error)
((object-type :reader object-type-of :initarg :object-type))
(:report

(lambda (condition stream)
(format stream "Failed object allocation for ~“A."
(object-type-of condition)))))

(defun allocation-error (object-type)

(error ’allocation-error :object-type object-type))

Where possible, the Lisp bindings should provide restarts so that the
library user can handle errors programatically.

Beyond these hints, we will not dwell on Common Lisp’s condition sys-
tem; for a good introduction see for example [8, chapter 19].

3.2 Library Initialization

Some libraries need to be initialized once or have a global handle that is
passed to various foreign functions. If the selfsame object is passed to all
or most functions, it need not be made part of the lisp-side API. Instead, it
can be initialized and stored at library-load time.
Herre is how cl-redland initializes the Redland foreign library, using the
low-level bindings from section 2.1:
(defvar *worldx
(make-instance
’world
:pointer (let ((world (librdf_new_world)))
(when (null-pointer-p world)
(redland-alloc-error "world"))
(1ibrdf_world_open world)
world))
"The global Redland World™~ object.")
If the library only needs to be initialized but does not have a global state
object, the following variation can be employed:
(defvar *library-initialized-p*
(progn (initialize-library) t))
In both cases, the variable holding the library state handle needs not be
exported or documented, since it is an implementation detail not of interest
to Lisp-side library users.

3.3 Using Objects Instead Of Raw Pointers

Each resource that is created C-side should have a corresponding Lisp ob-
ject that can be inspected, used in generic function dispatch and that can
handle the lifetime of the C-side resource. Take, for example, the part of the
Redland API that deals with creating, copying, printing and deallocating
URI objects:
librdf_uri* librdf_new_uri (librdf_world *world,

const unsigned char *uri_string);

librdf_uri* librdf_new_uri_from_uri (librdf_uri* old_uri);
void librdf_free_uri(librdf_uri *uri);

unsigned char* librdf_uri_as_string (librdf_uri *uri);
The Lisp-side URI object just stores the C-side pointer, with no state of

its own:
(defclass uri ()

((pointer :initform nil :initarg :pointer
:reader pointer)))
The remainder of this subsection shows how to implement the behaviour
for wrapper objects that lets them integrate seamlessly into a Lisp system.

3.3.1 The print-object method

Each object should have a corresponding print-object method that shows
helpful, short information about the object to the library user. This is espe-
cially important for wrapper objects, because much of the object state will
reside in the foreign library where it is unavailable to Lisp-side introspec-
tion — for example, inspecting a wrapper object in the debugger of the Lisp
implementation will likely only show an opaque pointer.

(defgeneric uri-to-string (uri)

(:method ((uri uri))
(librdf _uri_to_string (pointer uri))))

(defmethod print-object ((uri uri) stream)
(print-unreadable-object (uri stream :type t :identity t)
(format stream "“A" (uri-to-string uri)))
uri)
With the print-object method in place, the printed output of uri ob-
jects contains some useful info.

CL-USER> (rdf:uri "http://example.com/")
#<CL-REDLAND:URI http://example.com/ {11F5D0D9}>
CL-USER>

describe-object can be specialized in a similar way.

3.3.2 Wrapper Object Construction Protocol

Typically, creating a wrapper object means observing a more or less elabo-
rate allocation protocol to create the wrapped foreign resource at the same
time.

Keene [5, page 25] recommends the creation of constructor functions,
for example make-uri for the class uri to enforce mandatory instance
initialization steps. An alternative way, chosen for cl-redland, is to de-
fine an :after method on the generic function initialize-instance, to
make sure the user cannot construct uninitialized wrapper objects by calling
make-instance directly!.

(defmethod initialize-instance
:after ((instance uri) &key uri-string old-uri
&allow-other-keys)
(let ((uri-pointer
(cond
(uri-string (librdf_new_uri (pointer *worldx)
uri-string))
(old-uri (librdf_new_uri_from_uri
(pointer old-uri)))
(t (error "Can’t create URI without one of ~
uri, uri-string.")))))
(when (null-pointer-p uri-pointer)
(allocation-error "uri"))
(setf (slot-value instance pointer) uri-pointer)
(cffi:finalize
instance (lambda () (librdf_free_uri uri-pointer)))))

The method on initialize-instance enforces the invariant that each
uri object has a corresponding foreign object and allows the user to con-
struct uri objects from other uri objects and URI strings via make-instance.

Whether to implement constructor functions is a matter of taste; cl-
redland does not provide them because the additional boilerplate code and
documentation effort was not considered worthwhile.

3.3.3 Designator Functions

Common Lisp has the concept of designators, i.e. objects that denote other
objects. For example, in Common Lisp strings designate pathnames, so
all functions handling pathnames are prepared to handle strings as well.

!The author’s (unsubstantiated) guess is that the object initialization protocol was not
yet finalized when Keene’s book was written, hence the need for constructor functions in
her work.

Typically, a function with the same name as the type exists that converts
all designators to the designated type — for example, the function pathname
takes a pathname designator and returns a pathname object.
Where appropriate, the library author should provide designators to the
user. In cl-redland, strings are URI designators via the following function:
(defun uri (thing)
(etypecase thing
(uri thing)
(string (make-instance ’uri :uri-string thing))))
Most of the functions in cl-redland that operate on URI objects also
accept strings, making them more pleasing for the programmer to work
with.

3.3.4 Destruction and Resource Handling

To avoid memory and resource leaks, the foreign datastructures must be
deallocated when no longer needed. Typically, Lisp implementations pro-
vide a way to hook into the garbage collector so that user-supplied code is
executed when a Lisp object is collected. Here are the relevant parts of the
initialize-instance method again — at the end, Lisp is informed what to
do when garbage-collecting a uri object.
(defmethod initialize-instance
rafter ((instance uri) &key uri-string old-uri
&allow-other-keys t)
(let ((uri-pointer [...]))
[...]
(cffi:finalize
instance (lambda () (librdf_free_uri uri-pointer)))))
Although it should be general knowledge by now, we wish to emphasize
that relying on garbage collector finalization methods for resource deallo-
cation, especially for non-memory resources, is inherently unsafe! This is
because the garbage collector runs at unpredictable intervals and might not
collect objects for surprisingly long times, especially when memory pressure
is low in the Lisp system. Hence, means of explicitly deallocating foreign ob-
jects (and invalidating the corresponding Lisp wrappers) should be provided
at least for non-memory resources, for example connections to databases.
For non-memory foreign resources, facilities similar to Common Lisp’s
with-open-file should be implemented by the library. For example, Red-
land provides storage objects that deal with storing triples in memory, a file
or a database. Here is cl-redland’s (somewhat long) with-storage macro:

(defmacro with-storage
((storage &key (storage-name "memory")
(name "test") (options-string ""))
&body body)

"Evaluates BODY with STORAGE bound to a triple store. Also
binds *STORAGE* to the same triple store for the extent of
the form. The triple store object to which STORAGE is bound
has dynamic extent; its extent ends when the form is exited."

(let ((created (gensym "CREATED-")))

‘(letx* ((,created nil)
(,storage (make-instance
’storage :storage-name ,storage-name
‘name ,name
:options-string ,options-string))
(xstorage* ,storage))
(unwind-protect (progn (setf ,created t)
,0body)
(when ,created
(let ((pointer (redland-pointer ,storage)))
(1ibrdf_storage_sync pointer)
(1ibrdf_storage_close pointer)
(1ibrdf_free_storage pointer))
(setf (slot-value ,storage ’redland-pointer) nil)
(sb-ext:cancel-finalization ,storage))))))

It is still possible to create storage objects with indefinite extent via
make-instance normally, but when the lifetime of the object is known,
with-storage takes care to properly dismantle the storage object immedi-
ately and deregister it from the garbage collector after running the supplied
code block.

Cl-redland does not contain explicit means of deallocating foreign memory-
only resources at the moment. If it is discovered that finalizer methods do
not free foreign memory at a sufficient rate, implementing a generic function
free-object is considered. However, the author considers this as a measure
of last resort because free-object would leave an “empty” wrapper object
still accessible to the application, thereby breaking a useful invariant.

3.4 Provide Iterators And Result Lists

Because of the sparseness of C, operations that return a set of results are
usually implemented via iterators (also called cursors in database binding
libraries). For the sake of brevity, this describes solutions in an abstract
way, positing a foreign abstract-handle and functions to get the result
objects from it.

Lisp-side, there are some ways of giving result sets to the library user.

A get-result-stream / get-next-result combination is useful when a
large number of results is expected; it is used like this:
(loop with results = (get-result-stream foreign-handle)

for result = (get-next-result results)

while result

do (process result))

If nil can be a valid result, have get-next-result return two values:
the result and a boolean that indicates whether there are more results wait-
ing.

The get-all-results method of collecting iterator data accumulates
all results in a list and is used in the following way:

(dolist (result (get-all-results foreign-handle))

(process result))

This is more concise than the previous form, but has the disadvantage
that it collects all results beforehand. For large result sets or result objects,
this will increase memory pressure somewhat.

Another form of working with iterator results is to provide a custom
looping macro do-results:

(do-results (result foo)

(process result))

This is as concise as the dolist form and potentially as memory-efficient
as the loop, but not all users are comfortable with new iteration constructs.

A reasonable approach might be to provide all of the above forms, espe-
cially since each one is trivially implementable on top of the others.

3.5 Integrate With Other Libraries

The system should come with a system definition file for asdf [1] or mk-defsystem,
so that it can be automatically loaded by other systems. Also consider mak-

ing the library automatically installable via asdf-install [3]. Using this
infractructure means that users can install at least the Lisp parts of the
library with minimal effort.

4 Conclusion

Creating bindings to foreign libraries can be a worthwhile alternative to re-
implementing existing code in Common Lisp. Seamless integration of foreign
code is possible, and the results can be as pleasing to use as a wholly-native
library. Binding generators such as SWIG can take care of low-level interface
code with some help, but the implementation of an object-oriented API must
be done by hand. Further work is needed for seamless distribution — at the
moment, the foreign library must be manually installed, since Lisp-level tools
like asdf-install presently do not (and cannot be expected to) support the

10

automatic installation of arbitrary system-specific library code. Still, using
a foreign library is a good way to get access to needed functionality in Lisp
in a short time.

References

[1] Daniel Barlow. Asdf manual. http://constantly.at/lisp/asdf.pdf.
(14 Apr. 2006).

[2] Cffi — the common foreign function interface. http://common-1lisp.
net/project/cffi/. (26 Feb. 2006).

[3] Daniel Barlow et al. asdf-install. ~ Tutorial at http://cvs.
sourceforge.net/viewcvs.py/*checkout*/cclan/asdf-install/
doc/index.html. (17 Apr. 2006).

[4] Richard P. Gabriel. Patterns of Software. Oxford University Press,
1996. http://dreamsongs.com/NewFiles/Patterns0fSoftware.pdf
(22 Jun. 2006).

[5] Sonya Keene. Object-Oriented Programming in Common Lisp.
Addison-Wesley, 1989.

[6] RAf primer. http://www.w3.org/TR/rdf-primer/. (25 June 2006).

[7] Redland rdf application framework. http://librdf.org/. (26 Feb.
2006).

[8] Peter Seibel. Practical Common Lisp. Apress, 2005. http://
gigamonkeys.com/book/ (22 Jun. 2006).

[9] Simplified wrapper and interface generator. Qurlhttp://www.swig.org/.
(26 Feb. 2006).

[10] Uffi: Universal foreign function interface for common lisp. http://

uffi.b9.com/. (26 Feb. 2006).

11

