
CLOS discriminating functions and user-defined specializers

Christophe Rhodes∗

Goldsmiths, University of London

New Cross, London SE14 6NW

July 23, 2007

Abstract

We discuss the possibility for users of CLOS to extend the mop:specializer metaobject
class in the de facto standard Metaobject Protocol for Common Lisp, and how this possibility
interacts with ANSI-standardized functionality. To motivate the discussion, we provide two
simple examples: a specializer on a disjunction of classes and a simple pattern-matching spe-
cializer; we note the extent to which they can be accomodated with the standard mechanisms,
and detail the work done to support that in a contemporary implementation of the CLOS MOP
in Steel Bank Common Lisp, and discuss the remaining open problems and scope for resolving
them.

1 Introduction

Lisp has a venerable history of object-oriented programming; at one point in time, early in the
history of object-orientation, Flavors (Moon, 1986) and New Flavors, Common Objects, Object
Lisp and Common Loops (Bobrow et al., 1986) all coexisted. The Common Lisp Object System
(CLOS) was incorporated into the language in June 1988 (Steele, 1990, Chapter 26), and when
the ANSI Common Lisp standard (Pitman and Chapman, 1994) was formalized in 1995, Common
Lisp became the first ANSI-standardized programming language with support for object-oriented
programming.

In addition, CLOS was developed in conjunction with the design of a Metaobject Protocol
(MOP), as exemplified in Kiczales et al. (1991). Common Lisp as standardized only includes a very
small portion of this metaobject protocol (for instance, a recommendation to use mop:slot-value-
using-class in slot-value; some introspective functionality such as find-method; and arguably
a little ability for intercession in compute-applicable-methods, though in fact the standard does
not require that compute-applicable-methods be called as part of generic function dispatch), and
so to customize the behaviour of the object system in Common Lisp, it is necessary to go beyond
the standard language.

Many Common Lisp implementations support some of the MOP, to varying extents; a survey
from a few years ago (Bradshaw and de Lacaze, 2000) revealed many aspects of MOP support as

∗c.rhodes@gold.ac.uk

1

http://www.xach.com/clhs?q=slot-value
http://www.xach.com/clhs?q=find-method
http://www.xach.com/clhs?q=compute-applicable-methods
http://www.xach.com/clhs?q=compute-applicable-methods

being incomplete, even at the coarse level of specified classes and generic functions being unimple-
mented. More recently, the Closer1 project has provided both a set of test cases for implementations
of the Metaobject Protocol – which has encouraged some implementations to enhance their support
for it2 – and a compatibility layer to provide an environment as close as possible to that described
in AMOP in major implementations of Common Lisp.

This paper addresses primarily the issues found and resolved in supporting simple uses of non-
standard specializers. Specifically, we examine those uses for which certain simplifying assumptions
can be made, for example assumptions about ordering the specializers: either that there is a unique
order of specificity in all possible specializers that are applicable to any given object, or else that
any ambiguities in ordering do not affect the result of calling the generic function. Even with
these simplifying assumptions, it is necessary to go beyond the standard portions of the Metaobject
Protocol to achieve integration of non-standard specializers with the rest of the system.

The rest of this paper is organized as follows: after introducing some details about the historical
treatment of specializers in the CLOS MOP, and other related work, this paper in section 2 attempts
to motivate the use of non-standard specializers by presenting two simple examples. We discuss the
problems that were overcome in providing the support for even simple examples of non-standard
subclasses of mop:specializer and enumerate other, open problems in section 3, and finish by
detailing one particular avenue for possible further experimentation along with our conclusions.

1.1 Specializers in the CLOS MOP

Closer is an evolving project, and does not at present test all aspects of the Metaobject Protocol
– concentrating on the portions which are most clearly described. One aspect which has received
relatively little attention at the time of writing is the extensible nature of the mop:specializer

metaobject class, whose instances represent a description of the set of objects in one argument
position to which a method with that specializer is applicable.

For defmethod, there is only a surface syntax defined by the Common Lisp standard, with
parameter specializer names being class names for matching a class, and (eql form) for specializers
to match the value of form in the lexical environment. However, for find-method, the ANSI
standard defines a parameter specializer as either a class or a list (eql value).

The Art of the Metaobject Protocol defines the objects backing the surface syntax as be-
ing classes themselves and objects of class mop:eql-specializer-object obtained by calling
mop:intern-eql-specializer; both class and mop:eql-specializer-object are subclasses of
mop:specializer. There are discussions on the CLOS MOP mailing list between Gregor Kicza-
les and David Moon about whether the nature of the mop:eql-specializer-object is strictly
incompatible with the language which was eventually standardized by ANSI3: Moon specifically
points out the need for a compatibility translation for elements of the the specializers argument to
find-method.

AMOP leaves open (does not disallow explicitly) user-defined subclasses of mop:specializer

(but standard methods on e.g. compute-applicable-methods signal error on non-standard spe-
cializer classes; we shall return to this point later). We can examine the historical record of the
development of CLOS by inspecting the source code of Portable Common Loops (PCL), modified

1http://common-lisp.net/project/closer/
2At the time of writing, the MOP implementation of Steel Bank Common Lisp (Newman et al., 2000) fails none

of the Closer MOP test suite.
3Thanks to Pascal Costanza for bringing this exchange to the author’s attention.

2

http://www.xach.com/clhs?q=defmethod
http://www.xach.com/clhs?q=find-method
http://www.xach.com/clhs?q=class
http://www.xach.com/clhs?q=class
http://www.xach.com/clhs?q=find-method
http://www.xach.com/clhs?q=compute-applicable-methods
http://common-lisp.net/project/closer/

versions of which are used in a number of Common Lisp implementations: PCL internally defines
and uses a pcl:class-eq specializer, which is applicable only to objects whose class is eq to the
specializer’s class object (as opposed to a normal class specializer, which is also applicable to
objects whose class is a subclass of the specializer).

Additionally, there is evidence that PCL developers were interested in developing more es-
oteric specializers, as there are remnants of what appears to be an experiment in implement-
ing prototype-based dispatch: in the source code supporting mop:compute-applicable-methods-

using-classes, there is incomplete support for of pcl:prototype specializers, such as

(defun saut-prototype4 (specl type)

(declare (ignore specl type))

(values nil nil)) ; fix this someday

1.2 Related Work

Predicate dispatching – a dispatching system in which a method’s applicability is determined by
calling an arbitrary predicate – has been discussed in Ucko (2001), where the solution discussed
was to extend method qualifiers (arbitrary predicates not being associated with any particular
argument, and methods being distinguished from each other only on the basis of qualifiers and
specializers). The author notes portability difficulties with this approach, which would likely still
be present today: for example, some implementations will only accept non-standard qualifiers if
the generic function has a non-standard method combination, while a strict implementation of
define-method-combination will lead to errors if methods are placed in the same method group
with the same specializers (irrespective of how their qualifiers later affect dispatch).

2 Worked Examples

2.1 Disjunction specializer

The disjunction specializer we present here is applicable to arguments that are subclasses of any
of the classes of the specializer. While a disjunction specializer is not well-motivated from the
point of view of object-orientation – classes whose instances share behaviour should probably have
that shared behaviour modelled by a common superclass – the implementation details of such a
specializer are illustrative of some points.

Firstly, such a disjunction specializer has a natural place within the standard ordering of spe-
cializers: such a specializer is as specific as a specializer representing a common direct superclass
of the classes in question. If such a class in fact exists, then the tie can be broken in an arbitrary
(but consistent) way by choice of a suitable convention.

The major point to note is that, despite this natural and unambiguous ordering of the spe-
cializers, the entirety of compute-applicable-methods and mop:compute-applicable-methods-

using-classes need to be overridden as the standard methods on those functions are specified to
signal an error if they encounter a specializer which is neither a class nor an mop:eql-specializer.
Because the standard methods are otherwise opaque, there is no way of informing the system about

4saut here stands for specializer-applicable-using-type, a function internal to PCL for which this is one
among several helper routines.

3

http://www.xach.com/clhs?q=eq
http://www.xach.com/clhs?q=class
http://www.xach.com/clhs?q=define-method-combination
http://www.xach.com/clhs?q=compute-applicable-methods
http://www.xach.com/clhs?q=class

(defclass class1 () ())

(defclass class2 () ())

(defclass class3 () ())

(defclass class4 (class1) ())

(defgeneric foo (x)

(:generic-function-class gf-with-or))

(let ((specializer (ensure-or-specializer ’class1 ’class2)))

(eval ‘(defmethod foo ((x ,specializer)) t)))

(assert (foo (make-instance ’class1)))

(assert (foo (make-instance ’class2)))

(assert (raises-error? (foo (make-instance ’class3))))

(assert (foo (make-instance ’class4)))

Figure 1: Example code illustrating the semantics of a specializer on the disjunction of multiple
classes.

a ‘natural’ ordering for the non-standard specializers, and so a large amount of complex code needs
to be written by the user of non-standard specializers.

Additionally, some notion of specializer equality needs to be present, so that method redefinitions
behave as expected (removing an existing method with the semantically same specializer). In im-
plementing the disjunction specializer, we act conservatively by canonising unions to the same, eql,
specializer object: this is again a non-trivial operation, but it is necessary not only for find-method
to work as expected but also for relatively simple implementations of mop:specializer-direct-
methods and mop:specializer-direct-generic-functions.

2.2 Pattern specializer

A pattern specializer is perhaps more applicable in a well-founded way to programming, though
its connection to object-orientation is tenuous. However, the protocols exposed in the CLOS MOP
provide a convenient way to express functions using pattern-matching for dispatch (as in ML or
Haskell), without sacrificing the ability to program in a dynamic fashion typically afforded by
CLOS.5

An example of how we might wish to use a pattern-matching specializer is shown in figure 2. The
application example is the simplification module of a hypothetical computer algebra system, and
we suggest that it is reasonable to place methods for simplifying expressions with given operators
near the definition of other methods relating to those operators, such as their semantics or possibly
their graphical representation, so that the addition of a new operator need not involve editing of
existing functions.

5We could of course implement pattern functions simply using the same funcallable instances on which CLOS
is typically implemented. The benefits of using the existing CLOS MOP protocols are simplicity and parsimony;
however, it is possible that an implementation of pattern-matching functions might wish not to document that it is
implemented in this manner.

4

http://www.xach.com/clhs?q=eql
http://www.xach.com/clhs?q=find-method

(defgeneric simplify (x)

(:generic-function-class pattern-gf/1))

(defmethod simplify ((y _)) y)

;;; near the implementation of the * operator

(defmethod simplify ((x (* _ 0))) 0)

(defmethod simplify ((x (* 0 _))) 0)

(defmethod simplify ((x (* _ 1))) (simplify (second x)))

(defmethod simplify ((x (* 1 _))) (simplify (third x)))

;;; near the implementation of the + operator

(defmethod simplify ((x (+ _ 0))) (simplify (second x)))

(defmethod simplify ((x (+ 0 _))) (simplify (third x)))

Figure 2: An example for how a pattern-matching specializer might improve code locality, by
encouraging the implementation of relevant portions of overarching functionality to be located
near related definitions. We have intentionally kept the pattern-matching language simple for
presentational purposes.

In this example, there is no strongly-defined unambiguous ordering for the specializers: of the
patterns (. x) and (y .), it is not clear which should follow the other. Note that in our
example application for simplification, the same results are obtained whichever of the specializers
is treated as most specific (e.g. for an argument of (* 1 1) the return value will be 1, whichever
of the applicable * patterns is judged most specific.

The metaobject classes and support functions allowing the code in figure 2 to run are shown
in figure 3. These, along with the overriding of mop:compute-discriminating-function in figure
4, provide enough support for SBCL’s CLOS implementation to function as expected. Note in
particular that we again canonicalise specializers so that specializers with the same semantics are
eql, and also note the use of pcl:make-method-specializers-form to generate code that creates
the right specializer when evaluated.

Although we have assumed in figure 2 that the pattern matching specializers match list structure,
it would be straightforward to adapt the code in figure 4 to match instead patterns in a richer
domain-specific data structure, while keeping the lists as surface specializer syntax.

The code in figure 4 is an interpreter for our pattern language; we can of course implement a
compiler for that language and use that compiler to generate more efficient discriminating functions.
A simple compiler (without any optimizations based on static analysis of the set of patterns) is
shown in figure 5; more complex compilation strategies (see e.g. Le Fessant and Maranget (2001)
and references therein) would improve performance here.

We note that the method dispatch protocol means that we cannot straightforwardly get full
micro-efficiency with these pattern methods: we must destructure the argument to check whether
a given method is applicable, but we must invoke the method with a list of the (undestructured)
arguments. It is possible that a suitable override of mop:make-method-lambda might enable us to
recover this loss of efficiency, and also possibly to refer to pattern variables in method bodies.

5

http://www.xach.com/clhs?q=eql

(defclass pattern-specializer (specializer)

((pattern :initarg pattern :reader pattern)

(direct-methods :initform nil :reader specializer-direct-methods)))

(defvar *pattern-specializer-table* (make-hash-table :test ’equal))

(defun ensure-pattern-specializer (pattern)

(or (gethash pattern *pattern-specializer-table*)

(setf (gethash pattern *pattern-specializer-table*)

(make-instance ’pattern-specializer ’pattern pattern))))

(defclass pattern-gf/1 (standard-generic-function) ()

(:metaclass funcallable-standard-class)

(:default-initargs :method-class (find-class ’pattern-method)))

(defclass pattern-method (standard-method)

((lambda-expr :initarg :lambda-expr :reader pattern-method-lambda-expr)))

(defmethod sb-pcl:make-method-specializers-form

((gf pattern-gf/1) method snames env)

‘(list ,@(mapcar (lambda (s) ‘(ensure-pattern-specializer ’,s)) snames)))

Figure 3: Implementation classes and methods for one-argument generic functions with methods
specialized on patterns.

(defun matchesp (arg pattern)

(cond

((or (null pattern) (eq pattern ’_)) t)

((atom pattern) (eql arg pattern))

(t (and (matchesp (car arg) (car pattern)) (matchesp (cdr arg) (cdr pattern))))))

(defun method-interpreting-function (methods gf)

(lambda (arg)

(dolist (method methods (no-applicable-method gf (list arg)))

(when (matchesp arg (pattern (car (method-specializers method))))

(return (funcall (method-function method) (list arg) nil))))))

(defmethod compute-discriminating-function ((gf pattern-gf/1))

(method-interpreting-function (generic-function-methods gf) gf))

Figure 4: Implementation of a discriminating function for one-argument pattern-matching method
dispatch. Note that the result is dependent on the order of method definition, but also that we
are able to cache the generic function methods (as the discriminating function is recomputed if
methods are added or removed).

6

(defun compile-matcher (arg pattern success fail)

(cond

((or (null pattern) (eq pattern ’_)) success)

((atom pattern) ‘(if (eql ,arg ’,pattern) ,success ,fail))

(t (let ((car-name (gensym "CAR")) (cdr-name (gensym "CDR")))

‘(if (consp ,arg)

(let ((,car-name (car ,arg)) (,cdr-name (cdr ,arg)))

(declare (ignorable ,car-name ,cdr-name))

,(compile-matcher car-name (car pattern)

(compile-matcher cdr-name (cdr pattern)

success fail)

fail))

,fail)))))

Figure 5: A simple compiler for the pattern language of figure 4, taking an argument name, pattern,
and success and failure forms, and returning code to perform the discrimination.

3 Future Work

For some of the problems noted in this paper, we can propose solutions that we believe are com-
patible in spirit with the de facto standard Metaobject Protocol, though there may be difficulties
in incorporating those solutions into existing implementations of Common Lisp; we have validated
those solutions to the point of testing them with SBCL’s implementation of the Metaobject Pro-
tocol. There are additionally some issues to note that we have not attempted to address in our
implementation.

3.1 Solved problems

To support use of find-method with non-standard specializers, we suggest that there should be a
generic function equivalent to pcl:parse-specializer-using-class, dispatching on the generic
function’s class and returning a specializer object – and that for introspective purposes, it is also
reasonable to provide pcl:unparse-specializer-using-class.

However, pcl:parse-specializer-using-class is insufficient to support the implementation
of specializer names in defmethod, as the issue of running in the correct lexical environment is
important. In

(defmethod foo ((x integer) (y (eql bar))) ...)

the specializers are treated in a similar fashion to the method body, in that some of the portions
are evaluated in the lexical environment: specifically, while integer and eql are syntactic markers,
it is the value of bar when the defmethod form is executed that is the object being specialized on,
rather than the symbol bar. To support this (and arbitrary other ways of handling specializers in
defmethod forms) we suggest a new operator pcl:make-method-specializers-form, analogous to
mop:make-method-lambda, which should return a form which (when evaluated in the right lexical
environment) evaluates to a list of specializers6. Note that this function suffers from one of the same

6Although Common Lisp and the CLOS MOP do not define any qualifiers as having portions evaluated in the

7

http://www.xach.com/clhs?q=find-method
http://www.xach.com/clhs?q=defmethod
http://www.xach.com/clhs?q=integer
http://www.xach.com/clhs?q=eql
http://www.xach.com/clhs?q=defmethod
http://www.xach.com/clhs?q=defmethod

design quirks as mop:make-method-lambda, in that specializing it requires the generic function to be
extant and as an instance of its final class at the point when the defmethod form is macroexpanded.

Individual implementations will need to take care over various codepaths; certainly PCL as used
in SBCL implements certain optimizations which can be invalidated by user-defined specializers, but
because of the lack of attempts at using this facility, the optimizations were written insufficiently
defensively. For example, in mop:make-method-lambda, the system method attempted to insert
type declarations into the lambda corresponding to system class specializers, which allows for
efficient method functions with no extra user-provided declarations. Another case is that if the
second return value from mop:compute-applicable-method-using-classes is null while the first
is not, the system treats the first value as a list of possibly-applicable methods which it should
build a discrimination net to distinguish between. Both of these cases caused problems to the
initial implementation of user-defined specializers.

3.1.1 Dictionary

Generic Function parse-specializer-using-class

Syntax:
parse-specializer-using-class generic-function specializer-name

This generic function returns an instance of mop:specializer, representing the specializer named by
specializer-name in the context of generic-function.

Primary Method parse-specializer-using-class (gf standard-generic-function) (name t)

This method applies the standard parsing rules for consistency with the specified behaviour of find-method.

Generic Function unparse-specializer-using-class

Syntax:
unparse-specializer-using-class generic-function specializer

This generic function returns the name of specializer for generic functions with class the same as generic-

function

Primary Method unparse-specializer-using-class

(gf standard-generic-function) (specializer specializer)

This method applies the standard unparsing rules for consistency with the specified behaviour of find-method.

Generic Function make-method-specializers-form

Syntax:
make-method-specializers-form generic-function method specializer-names env

This function is called with (maybe uninitialized, as with the analogous arguments to mop:make-method-

lambda) generic-function and method, and a list of specializer names (being the parameter specializer names
from a defmethod form, or the symbol t if unsupplied), and returns a form which evaluates to a list of
specializer objects in the lexical environment of the defmethod form.

Primary Method make-method-specializers-form

(gf standard-generic-function) (method standard-method) names env

This method implements the standard behaviour for parameter specializer names.

lexical environment of the defmethod form, if a user were to need this, then a similar operator pcl:make-method-

qualifiers-form could be implemented.

8

http://www.xach.com/clhs?q=defmethod
http://www.xach.com/clhs?q=find-method
http://www.xach.com/clhs?q=find-method
http://www.xach.com/clhs?q=defmethod
http://www.xach.com/clhs?q=t
http://www.xach.com/clhs?q=defmethod
http://www.xach.com/clhs?q=defmethod

3.2 Open problems

The greatest problem in opening specializers to user definition lies in method ordering and method
combination. In the general case, there is no single unambiguous ordering of a set of applicable meth-
ods, even given particular arguments. This is largely a problem for the implementor of a specializer,
as compute-applicable-methods and mop:compute-applicable-methods-using-classes must
be overriden in any case, and it is the return value of those functions that determines the order of
specificity.

However, this does imply that the entirety of compute-applicable-methods and mop:compute-

applicable-methods-using-classes must be reimplemented for every new generic function class
accepting extended specializers – a non-trivial amount of work, as implementing those functions
(even with just the standard behaviour) comes to hundreds of lines of code. This is probably
not optimal, and suggests that there is scope for experimentation with a protocol to replace the
applicable method computation performed by compute-applicable-methods.

A sketch of such a protocol might include calling a function pcl:specializer-of (taking two
arguments: an object and the generic function being called, and returning the most specific spe-
cializer applicable to the object for which cacheing of applicable methods is suitable) instead of
pcl:class-of, so that methods on pcl:specializer-of specialized on a generic function class
could be written to return an application-specific specializer for a given argument object; then a
function pcl:compute-applicable-methods-using-specializers could replace the computation
and cacheing functionality of mop:compute-applicable-methods-using-classes.

Another ingredient of such a protocol might be a predicate for determining whether a specializer
is more or less specific than another (say pcl:specializer-lessp, along with eql to test for equal
specificity), and defining how this is called from within the method ordering protocol functions. We
suggest that experimentation along the lines of this sketch, using a defined generic function class,
is a way to begin exploring the issues involved in the interoperability of user-defined specializers
with the standard specializers and with each other.

In practice, the major impediment to the use of mop:specializer subclasses is that support for
them is patchy to nonexistent. Aside from recent work in SBCL, which could be straightforwardly
ported to PCL-based CLOS implementations such as CMUCL and GCL, there are architectural
hurdles to clear: Allegro Common Lisp and GNU CLISP do not implement mop:make-method-

lambda, and do not allow subclasses of mop:specializer to be used (even as literals) as arguments
to defmethod. Thus, there is no way to create a method with non-standard specializers in those
implementations. Lispworks Common Lisp does not include the mop:specializer metaobject
class at all, representing eql specializers as conses – which makes it rather difficult to subclass
mop:specializer in the first place. MCL-derived Lisps have an entirely different generic function
calling protocol, so much of the discussion above does not apply to them, while most of the newer
Common Lisp implementations do not purport to support the Metaobject Protocol.

4 Conclusions

We have presented our work allowing the MOP programmer to define subclasses of mop:specializer
which integrate cleanly with the rest of CLOS, including the need for a protocol operator to act
at macroexpansion time in a similar fashion to mop:make-method-lambda. We have additionally
enumerated some open problems with user-extensible specializers, and suggested a path for exper-
imenting with possible protocol resolutions to these open problems.

9

http://www.xach.com/clhs?q=compute-applicable-methods
http://www.xach.com/clhs?q=compute-applicable-methods
http://www.xach.com/clhs?q=compute-applicable-methods
http://www.xach.com/clhs?q=eql
http://www.xach.com/clhs?q=defmethod
http://www.xach.com/clhs?q=eql

Acknowledgments

The author thanks Paul Khuong7 and the workshop reviewers for valuable discussions and helpful
feedback.

References

Bobrow, D. G., Kahn, K., Kiczales, G., Masinter, L., Stefik, M., and Zdybel, F. (1986). Common
Loops: Merging Lisp and Object-Oriented Programming. In OOPSLA’86 Proceedings, pages
17–29.

Bradshaw, T. and de Lacaze, R. (2000). A Survey of Current CLOS MOP Implementations. In
Japan Lisp Users Group Meeting.

Kiczales, G., des Rivières, J., and Bobrow, D. G. (1991). The Art of the Metaobject Protocol. MIT
Press.

Le Fessant, F. and Maranget, L. (2001). Optimizing Pattern Matching. In ICFP’01 Proceedings,
pages 26–37.

Moon, D. (1986). Object Oriented Programming with Flavors . In OOPSLA’86 Proceedings, pages
1–8.

Newman, W. H. et al. (2000). SBCL User Manual. http://www.sbcl.org/manual/.

Pitman, K. and Chapman, K., editors (1994). Information Technology – Programming Language –

Common Lisp. Number 226–1994 in INCITS. ANSI.

Steele, Jr, G. L. (1990). Common Lisp: The Language. Digital Press, second edition.

Ucko, A. M. (2001). Predicate dispatching in the Common Lisp Object System. Technical Report
AITR-2001-006, MIT AI Lab, Cambridge, MA. MEng thesis.

7khuongpv@iro.umontreal.ca

10

http://www.sbcl.org/manual/

	Introduction
	Specializers in the CLOS MOP
	Related Work

	Worked Examples
	Disjunction specializer
	Pattern specializer

	Future Work
	Solved problems
	Dictionary

	Open problems

	Conclusions

