
Using Data Parallelism in Lisp for Implementing
a Quantum Simulator

Leonardo Uribe, Pascal Costanza, Charlotte Herzeel, Theo D’Hondt

Programming Technology Lab
Vrije Universiteit Brussel

{leonardo.uribe|pascal.costanza|charlotte.herzeel|tjdhondt}@vub.ac.be

Abstract. This paper describes two implementations of QLisp (a Lisp
extension to simulate quantum computations) in two different data-
parallel extensions of Lisp: *Lisp and Paralation Lisp. First, the ba-
sic concepts of the languages and the quantum simulator are explained.
Then, the porting process is described and a comparative evaluation of
the two implementations is made. It is shown that data parallel languages
are well suited for parallelizing QLisp. Also, in the porting process, we
discovered some non-obvious differences between the different data par-
allel languages.

1 Introduction

The recent advent of multi-core architectures promises significant increases in
computing power, but comes with the cost of increased complexity with regard
to programmability. Parallel programming allows the programmer to distribute
code on different processors. There are two main forms of parallelism: data-
parallelism and task-parallelism. Data-parallelism emphasizes on the distribu-
tion of data as the key to get parallel processing. Task-parallelism focuses on
distributing execution processes. However, parallel programming is not a new
invention, but a respected research field whose popularity peaked in the 1980’s,
especially when it comes to language research. For example, several dialects of
Lisp were developed for programming the infamous Connection Machine, like
Connection Machine Lisp, *Lisp and Paralation Lisp. Given the current multi-
core hype, we believe it is worthwhile to revisit the concepts introduced by these
languages. In this paper, we present a comparison between *Lisp and Parala-
tion Lisp. This comparison is based on our own experiences in using *Lisp and
Paralation Lisp to re-implement QLisp, an existing simulator for quantum com-
puters.

This paper is structured as follows: Section 2 introduces the major Lisp ex-
tensions for data-parallel programming: *Lisp, Connection Machine Lisp and
Paralation Lisp. Sections 3 gives a short introduction to QLisp. Section 4 de-
scribes how it was implemented in *Lisp and Paralation Lisp. In Section 5 a
comparison of the two implementations of Qlisp is made. A final section presents
the conclusions.

2 Data Parallel Programming in Lisp

2.1 Connection Machine Lisp

Connection Machine Lisp (CM-Lisp), a data-parallel extension of Common Lisp,
was invented by Daniel Hillis and Guy Steele and was intended to be used
for programming symbolic AI applications on the Connection Machine [1]. The
Connection Machine is a highly parallel supercomputer organized using a mul-
tidimensional cubic grid structure with one processor on each vertex. It has
thousands of simple processors, each one having a local memory. Programming
a Connection Machine is similar to programming a single processor that can re-
ceive multiple data in parallel and apply a single instruction to all of these data
at the same time. CM-Lisp has special tools to describe instructions operating
in parallel over multiple data. Though CM-Lisp was never fully implemented, it
introduces a number of important concepts and influenced later languages like
*Lisp and Paralation Lisp.

CM-Lisp introduces a new data structure called xapping and some addi-
tional instructions to introduce parallelism. A xapping (which refers to a kind
of ‘mapping’) is an unordered set of ordered pairs. The first element of the pair
is called the ‘index’ and the second the ‘value’. As in a set representation of
a mathematical mapping, no two pairs in a xapping can have the exact same
indexes. The following is an example of a simple xapping: {a->4 c->25 b->9}.
In terms of implementation on a parallel computer, the indexes can represent
labels for different processors and each value represents a datum associated to
the corresponding processor. If the indexes are the first n natural numbers, the
xapping becomes a xector (in analogy to a vector), which can be represented
as [4 25 9] if the indexes (a, b, c) are changed by 1, 2 and 3 in the last xapping.

Parallelism is introduced by applying a function concurrently to all elements
of a xapping using the ‘apply-to-all’ instruction: When a function is applied to a
xapping using the ‘apply-to-all’ instruction, the result is a new xapping whose
elements are the result of applying the function to each of the elements. The
following code illustrates the use of xectors and the ‘apply-to-all’ instruction:

1 (defvar a ’[4 25 9])
2 [4 25 9]
3 α (+ · a 1)
4 =>[5 26 10]

In the first line, a xector is created. Line 3 implements a parallel sum: The
‘α’ symbol indicates that a parallel operation is to be done. The bullet prefixed
to the name of the xector (·) indicates that the Lisp form that follows should
be executed once (element by element), instead of several times in parallel. The
result of the operation is shown on line 4. A kind of ‘distributive law’ can be
observed for α’s and ·’s: The expression in line 3 can be re-expressed as α (+
·a 1) = (α a α1), where α has been distributed and has being canceled when
multiplied by ·. The new expression can be interpreted as: “Make a parallel sum
between the elements of xector ‘a’ and a xector of 1’s”. This kind of notation is
similar to the backquote notation of Common Lisp, where the backquote quotes

everything, except the places where there are commas. Connection Machine Lisp
has other constructs to manipulate xappings and functions to generate, for
instance, composed functions or to allow some elements of a xapping to remain
unaltered when an “apply-to-all” instruction is executed. With these tools, lots
of complex xapping transformations can be expressed [1].

2.2 *Lisp

*Lisp (pronounced “StarLisp”) was created in 1985 by Cliff Lasser and Steve
Omohundro as a high-level language for the Connection Machine [2]. For our
experiments, we have made use of J.P. Massar’s *Lisp simulator 1. *Lisp is
an extension of Common Lisp and introduces a structure called Pvar (parallel
variable) -essentially a vector- as its basic data-parallel structure. Pvars are
a representation of multiple processors. Each element in a Pvar represents an
entry in a processor’s memory. The programmer can do standard operations on
Pvars, like addition, multiplication, elements reorder, and so on, but it also has
primitives for communicating between Pvars. *Lisp is well suited for massive
parallel computing related to homogeneously composed systems, for instance
particle animations [3]. The code below shows the creation of two Pvars, followed
by an expression that adds both [2].

1> (*cold-boot :initial-dimensions ’(16 16))
256
(16 16)
2> (defpvar lots-of-sevens 7)
LOTS-OF-SEVENS
3> (defpvar lots-of-threes 3)
LOTS-OF-THREES
4> (ppp lots-of-sevens :mode :grid :end (4 4))
DIMENSION 0 (X) ----->
7 7 7 7
7 7 7 7
7 7 7 7
7 7 7 7
5> (ppp (+ lots-of-sevens lots-of-threes) :mode :grid :end (4 4))
DIMENSION 0 (X) ----->
10 10 10 10
10 10 10 10
10 10 10 10
10 10 10 10

The first instruction defines the default size of the Pvars to be used in the
code. This starts the Connection Machine with 256 processors, arranged in a
square pattern of size 16 by 16. The next two instructions generate two Pvars
called “lots-of-sevens” and “lots-of-threes” initialized to 7 and 3 respectively. The
ppp function implements a pretty-printer for Pvars. It allows showing a whole
Pvar or just a part of it. In the final instruction, a sum operation is realized
between the created Pvars. This task generates as many parallel tasks as there
are elements in a Pvar.

1 See http://www-2.cs.cmu.edu/afs/cs/project/ai-repository/ai/lang/lisp/impl/starlisp/0.html

2.3 Paralation Lisp

Paralation Lisp is an implementation of the Paralation Model (a contraction
for PARAllel reLATION Model) described by Gary W. Sabot in his book ‘The
Paralation Model’ [4]. For simulation purposes, Sabot’s book describes a compiler
for paralation Lisp to Common Lisp

In the Paralation Model, the basic data structure is called a “field”: It resem-
bles an array of objects. Fields are grouped in ‘paralations’, by which the concept
of locality or nearness between fields is introduced. The paralation model has
three basic operators: elwise, move and match.

The ‘elementwise’ evaluation operator elwise allows the execution of a pro-
gram instruction in every site of a paralation at the same time: This is the
standard way to introduce parallelism. The communication process is steered
using the move operator, which moves data from one paralation to another, us-
ing a ‘mapping’ as a guide. Such a ‘mapping’ can be generated by the match
operator, which is applied over two fields and returns an abstract communica-
tion pattern based on the concrete fields’ elements. This mapping is applicable
to any pair of fields having the same dimension as the originals. Using the three
basic operators in combination with the paralation data structure, it is possible
to define higher-level operators, and as such construct a complete parallel pro-
gramming language. The Paralation model was embedded in Common Lisp, and
the resulting dialect was dubbed ‘Paralation Lisp’. The following example shows
the basic usage of the key operators in the language:

1 (setq f (make-paralation 4))
2 => (0 1 2 3)
3 (setq g (make-paralation 2))
4 => (0 1)
5 (setq f1 (elwise (f) (elt ’(0 0 1 1) f)))
6 => (0 0 1 1)
7 (<- f :by (match g f1)
8 :with #’+)
9 => (1 5)

In the first line, a paralation is created and a field with the index for each
entry is returned. The third line generates another paralation and again such
an ‘index field’ is returned. In the fifth line, the elwise operator is used to
make a parallel assignment to the values of a field. The field f acts here as the
index position for the elt function. The seventh and eighth lines show the use of
move (<-): The entries of f are moved using a mapping generated by the match
operator. If more than one values in the field f1 have the same ‘image’, they will
be reduced to one with the + operator. The final result is given in line nine.

3 Quantum simulation

3.1 Basic Concepts of Quantum Computation

In the beginning of the 1980’s, the well known physicist Richard Feynman real-
ized that there were some quantum physics phenomena that cannot be simulated

by a standard digital computer, but suggested that computation can be greatly
improved by taking advantage of those phenomena.

In 1985, David Deutsch – also a physicist – described a first model for a
quantum computer, something similar to the Turing machine model proposed
in 1936 for the digital computer. The interest in quantum computers increased
significatively in 1994 when Peter Shor, from AT&T, described a quantum algo-
rithm for efficient prime factorization, a useful tool to decrypt RSA2 encrypted
messages.

In quantum computation, the basic unit of information is a quantum bit
(qubit). This quantum bit can be in the two classical states (0 and 1) at the
same time, but once it is observed it collapses to a unique state. A qubit can be
mathematically represented as a superimposition of classical states. The prob-
ability to get one of these states when the qubit is observed is represented as
a coefficient. In the formula below, the coefficients v0 and v1 represent these
probabilities.

v = v0|0〉+ v1|1〉

A new quantum register can be constructed by applying the tensor product
to two (or more) existing qubits. A 2-qubit qureg is represented as a superim-
position of all the possible states of two classical bits and so on:

v = v00|00〉+ v01|01〉+ v10|10〉+ v11|11〉

The fact that a qureg can be in multiple classical states at the same time
makes the quantum computation inherently parallel. As the number of qubits
in a qureg grows linearly, its classical representation grows exponentially. For
instance, a 5-qubit qureg needs 25 = 32 coefficients to be represented in a
classical computer. In this resides the power of quantum computers and also its
difficulty to be simulated on a classical machine. A more useful representation
of quregs is a vector representation:

v =

(
v00
v01
v10
v11

)

This representation is well suited to apply quantum operators (qop) to a
qureg. A quantum operator is represented as a squared matrix acting over the
vector representation of a qureg. The entries for such a matrix belong to the
field of complex numbers. This mathematical representation shows the fact that
a quantum operator is a linear transformation of a qureg, a much more general
operation than the equivalent classical transformation, which is restricted to all
the permutations between bits in a register. A qop acting over a qureg can be
represented as follows:

2 In cryptography, RSA is an algorithm for public-key cryptography. See:
http://en.wikipedia.org/wiki/RSA

Xv =

(
x0 x4 x8 x12
x1 x5 x9 x13
x2 x6 x10 x14
x3 x7 x11 x15

)(
v0
v1
v2
v3

)
=

(
v′
0
v′
1
v′
2
v′
3

)

The tensor product is the mathematical operator used to build bigger quregs
and qops from simpler ones3. The example below shows how the tensor product
between two qops is computed.

t =
(
t0
t1

)
,u =

(
u0
u1

)
, t⊗ u =

(
t0u0
t0u1
t1u0
t1u1

)

Y =
(
y0 y2
y1 y3

)
,Z =

(
z0 z2
z1 z3

)
,Y ⊗ Z =

(
y0z0 y0z2 y2z0 y2z2
y0z1 y0z3 y2z1 y2z3
y1z0 y1z2 y3z0 y3z2
y1z1 y1z3 y3z1 y3z3

)

3.2 QLisp

QLisp is a language extension to Common Lisp to simulate quantum computa-
tions. It uses the mathematical model of quantum mechanics to simulate quan-
tum phenomena, which is a different approach than the so called ‘reality-based
simulation’, which tries to imitate the real world facts as accurately as possible[5].
Because QLisp uses a mathematical model for simulating quantum computa-
tions, the quregs can be observed without disturbance, something that is not
possible for a real qureg due to the laws of quantum physics. This fact allows
some flexibility in the calculations, makes some complex quantum operations
easier and makes QLisp well suited for educational purposes.

QLisp implements two optimizations in order to simplify and speed up its ex-
ecution: Sparse matrices and single operator application. Sparse matrices were
introduced based on the fact that the quantum mathematical model uses big
matrices and vectors whose entries are, generally speaking, mostly zeros. Rep-
resenting such matrices as hash tables including only the non-zero values allows
QLisp to make certain operations faster. Secondly, “single operator application”
optimizes how a single operator (an operator acting over only one qubit) needs
to be applied to a multiple-qubit qureg. Instead of creating a big sparse opera-
tor, QLisp uses a special operator that acts only over the qubit of interest in the
qureg. As an example of QLisp code, the implementation of the Deutsch-Jozsa
algorithm is shown below:

1 (defun deutsch-jozsa (n unitary-fn)
2 "returns T if unitary-fn is constant"
3 (let* ((_phi1_ (make-qureg n (hadamard-init)))
4 (_phi2_ (qc-apply
5 (make-qureg 1 (standard-init 1)) (-h-)))

3 For specific information about the tensor product, see for instance:
http://en.wikipedia.org/wiki/Tensor product

6 (_psi_ (funcall unitary-fn
7 (tensor-items _phi1_ _phi2_))))
8 (constant-qureg-p
9 (collapse-basis
10 (qc-apply-range _psi_ -h- 0 (1- n))))))

This algorithm determines if a given function f : 0, 1n → 0, 1 is constant
(returns always the same value) or balanced (returns 0 for half of the elements
and 1 for the other half). It is assumed that the given function belongs to one
of these two categories. The ‘qc-apply’ function in the fourth line represents the
application of a qop (-h-) to a qureg. The function ‘tensor-items’ in the seventh
line generates a qureg ‘combining’ the quregs phi1 and phi2 , previously de-
fined in lines 3 and 4. In the last line, ‘qc-apply-range’ is the repeated application
(from 0 to n-1) of a single qop (-h-) to a multi-qubit qureg. Collapse-basis -
line 9- simulates the process of collapse of the qureg psi once it is observed.
Constant-qureg-p -line 8- returns true if the observed qureg allows to conclude
that the given function is constant and false if it is balanced. The QLisp source
code frequently uses loops to implement quantum operations. These loops are
perfect candidates for parallelization.

4 Re-implementing QLisp in Data-Parallel Languages

Qlisp is well suited to be ported to a data-parallel language because the math-
ematical model of quantum mechanics uses matrices, vectors and operations
between them to simulate quantum operators, quantum bits and their mutual
interactions. Nevertheless, the parallelization process involved a lot of code re-
writing, because the original optimizations made in QLisp to represent matrices
and vectors as hash tables is an optimization beneficial for a sequential com-
puter, but is ignored in the new parallel code. This requires a change in the
representation of structures and operators of QLisp.

In what follows, we present a more detailed discussion of our experiences in
rewriting QLisp using *Lisp and Paralation Lisp. We will use the implementation
of the tensor product as a running example. We initially restricted ourselves to
these languages, because they were the only Lisp dialects for which we could find
simulators (for *Lisp see: http://examples.franz.com/index.html, for Paralation
Lisp see [4]).

As a point of reference, the naive Common Lisp implementation of the tensor
product, without considering the Qlisp hash-table optimization, is shown in fig-
ure 1. Qops are represented as vectors. Observe in lines 6 and 9 the use of single
loops and in lines 12-14 the use of two parallel loops. The replacement of that
kind of loops by parallel computations is the main target of the parallelization
process. The semantics of the code will be treated in more detail below.

4.1 QLisp in *Lisp

At the beginning of the *Lisp program, we declare the virtual layout of the
Connection Machine’s processors. Next we need to create the adequate Pvars

1 (defun tensor-qop (qop-1 qop-2)
2 (let* ((dim-1 (truncate (sqrt (length qop-1)) 1))
3 (dim-2 (truncate (sqrt (length qop-2)) 1))
4 (dim-12 (* dim-1 dim-2))
5 (dim-122 (* dim-12 dim-2))
6 (entry-1 (loop for self-address from 0 below (expt dim-12 2)
7 collect (+ (* dim-1 (truncate self-address dim-122))
8 (truncate (mod self-address dim-12) dim-2))))
9 (entry-2 (loop for self-address from 0 below (expt dim-12 2)
10 collect (+ (* dim-2 (truncate (mod self-address dim-122) dim-12))
11 (mod self-address dim-2)))))
12 (loop for i in entry-1
13 for j in entry-2
14 collect (* (elt qop-1 i) (elt qop-2 j)))))

Fig. 1. Tensor product implemented in Common Lisp

for representing qops and quregs. Internally, these are implemented as matrices.
Figure 2 shows how to represent Qlisp’s matrix data structures as Pvars, mapped
onto the selected layout.

Fig. 2. Representation of a matrix in *Lisp. A: the matrix; B: Virtual processors
layout; C: a Pvar representing the matrix

Figure 2A shows the matrix. Figure 2B shows the virtual processors layout
we declare as default. Figure 2C shows how each entry of the matrix is stored
in a particular processor’s memory: Only this processor operates on that entry.
This kind of Pvar is adequate to both represent quregs and qops. Those are the
only structures needed to simulate quantum computations in QLisp. In order
to parallelize the process, the programmer has to determine how each entry has
to change depending on the function applied, its position on the Pvar and the
value of the other entries. A particular example of a parallelization process is
the tensor product between operators. Figure 3 shows the two operands and the
result. The programmer has to build a function that, given the position of the

Fig. 3. Tensor product between two qops

entry in the resulting Pvar (6), produces the two different positions (1,2) of the
related entries in the operands.

The whole function, written in *Lisp is:

1 (defun tensor-qop (qop-1 qop-2)
2 (let* ((dim-1 (expt 2 (qop-size qop-1)))
3 (dim-2 (expt 2 (qop-size qop-2)))
4 (dim-12 (* dim-1 dim-2))
5 (dim-122 (* dim-12 dim-2)))
6 (*let* ((entry-1 (+!! (*!! dim-1 (truncate!! (self-address!!) dim-122))
7 (truncate!! (mod!! (self-address!!) dim-12) dim-2)))
8 (entry-2 (+!! (*!! dim-2 (truncate!! (mod!! (self-address!!) dim-122) dim-12))
9 (mod!! (self-address!!) dim-2))))
10 (if!! (<!! (self-address!!) (expt (* dim-1 dim-2) 2))
11 (*!! (pref!! qop-1 entry-1) (pref!! qop-2 entry-2))
12 nil))))

Fig. 4. Tensor product implemented in *Lisp

The code in lines 6–7 defines a mapping that gives as result the required
entry in the first operand (entry-1) as a function of the position of the entry in
the resulting Pvar. Written as a mathematical formula, where ‘entry3’ represents
an entry in the resulting Pvar it looks like this:

Entry1 = dim1 ∗ (Entry3/(dim1 ∗ (dim2)
2
) + (Entry3 mod (dim1 ∗ dim2))/dim2

In a similar way, the code in lines 8–9 defines the entry for the second operand.
The double exclamation mark after an operator indicates a parallel operation
acting over each entry of the Pvars given as arguments. For instance, the func-
tion (self-address!!) is used to determine the position of each processor in
the Pvar. *Lisp has parallelized versions of almost all of the basic Common Lisp
functions (for instance, look in the example for if!!, mod!!, +!!, etc). In the
code, the division operator is replaced with truncate!!, which returns an inte-
ger instead of a float number. This has to be done in order to pass entry-1 and
entry-2 as arguments of the function pref!! in line 15. That function returns

the value of a given entry in a given Pvar. The parallel modulo function (mod!!)
is used to simulate the periodicity in the subindexes of the tensor-product re-
sult (see Figure 3). The main operation in the function definition is in line 11
where two entries of the two argument Pvars are multiplied. The communica-
tion between Pvars is implicit in this process: Each entry of the resulting Pvar
communicates with entries in the argument Pvars by applying an operation on
their values.

4.2 QLisp in Paralation Lisp

In this implementation of QLisp, qops and quregs are represented as fields.
Different qops or quregs belong to different paralations. Each operation between
those elements is done by combining communication between paralations (move)
and processing in paralations (elwise). The code excerpt below shows the tensor
product between two qops:

1 (map1 (elwise (index)
2 (+ (* side1 (truncate index side122))
3 (truncate (mod index side12) side2))))
4 (map2 (elwise (index)
5 (+ (* side2 (truncate (mod index side122) side12))
6 (mod index side2))))
7 (multi1 (<- qfield1 :by (match map1 index1)))
8 (multi2 (<- qfield2 :by (match map2 index2)))
9 (result (elwise (multi1 multi2)
10 (* multi1 multi2))))

Fig. 5. Tensor product implemented in Paralation Lisp

This chunk of code is in a let* form. Lines 1-3 generate the mapping that
will be used to move data from the field representing the first qop operand
to a field in the resultant paralation. For clearness, The mathematical formula
representing this mapping is repeated below:

Entry1 = dim1 ∗ (Entry3/(dim1 ∗ (dim2)
2
) + (Entry3 mod (dim1 ∗ dim2))/dim2

Lines 4-6 generate another mapping to move data from the second qop operand
to the resultant paralation. Then, lines 7 and 8 move the entries of the operand-
qops to the resulting-qop paralation using the generated mappings. Lines 9 and
10 perform the multiplication of the generated fields to produce the field repre-
senting the tensor operation. Figure 6 is a graphical representation of the code
we just explained.

5 Comparison of QLisp implementations

*Lisp has a limitation related to the size of the Pvars used in a program. The
programmer has to define, as a global variable, a fixed default size of the Pvars

Fig. 6. Tensor product between two qops

he is going to create along the program. In some cases, this value can be changed
easily as part of the code. However, operating on different Pvars with different
sizes at the same time is not supported in *Lisp, but can only be simulated,
which can be very difficult for the programmer to deal with. As a consequence,
all qureg and qop were implemented over the same Pvar layout and dealing with
unused entries was a tedious job.

In Paralation Lisp, the parallel operations also have to be done between
same-sized fields. Nevertheless, you can have different-sized fields at the same
time and use the move operator to adequately change their dimensions and
perform operations between them (see Figure 6).

Analyzing Figures 3 and 6 and the related code, it can be seen that *Lisp does
not make a clear difference between communication and computing processes.
Operations and data-movement are done at the same time and it is not clear for
the programmer how much communication between processors and how much
computations are needed to run the code. In contrast, Paralation Lisp makes a
clear separation of the two processes. The programmer is aware when a communi-
cation process takes place (move instruction) or when he carries out a computing
process (elwise instruction). This fact is very important to make an estimate of
the efficiency of a parallel program, given that the programmer knows the time
costs of communication and processing for a given machine.

The way to express parallelism in *Lisp is simple and focuses on the opera-
tors. For instance, the instruction (pref!! qop-1 entry-1) tells the compiler to
return a value from the Pvar qop-1 referenced for an entry of the Pvar entry-1.
The operator automatically assumes qop-1 as a ‘whole’ Pvar and entry-1 as
the Pvar over which the parallel process has to be done element by element. In
Paralation Lisp, the syntax is more complex and a similar instruction looks like:
(elwise (entry-1) (elt qop-1 entry-1)).

Even though the *Lisp instruction is easer to write, the syntactic difference
between the two languages hides a semantic difference: Paralation Lisp allows

nested parallel structures and *Lisp does not. For instance, imagine qop-1 as
a field of fields. Then the instruction (elwise (entry-1 qop-1) (elt qop-1
entry-1)) makes sense and references elements belonging to the elements (sub-
fields) of qop-1.

6 Summary/Conclusions

In the process of parallelizing Qlisp using *Lisp and Paralation Lisp, almost all of
the code had to be rewritten. This is because QLisp represents matrices as hash
tables, but in *Lisp and Paralation Lisp, in order to achieve the parallelization,
matrices have to be represented as Pvars and fields respectively. The different
representations are incompatible and part of the code written in QLisp had
to be re-implemented in terms of the new data structures. Nevertheless, the
quantum computation model is very well suited to be represented in data-parallel
languages, and the parallelization process looks ’natural’. Paralation Lisp has
some advantages over *Lisp: It is better to manage different-sized parallel-data-
structures, it makes a clear separation between communication and computation
concepts, and it allows for nested parallelism. As a future work, we will provide
a ‘shape facility’ to Paralation Lisp, which will allow as to define matrix-shaped
Pvars and port Qlisp in a more efficient way.

References

1. Steele, G., Hillis, D.: Connection Machine Lisp: Fine-grained Parallel Symbolic
Processing. In: LFP ’86: Proceedings of the 1986 ACM conference on LISP and
functional programming, New York, NY, USA, ACM (1986) 279–297

2. Meglicki, Z.: The CM5 *Lisp Course. Centre for Information Science Research -
The Australian National University (January 1994)

3. Sims, K.: Particle Animation and Rendering Using Data Parallel Computation. In:
SIGGRAPH ’90: Proceedings of the 17th annual Conference on Computer Graphics
and Interactive Techniques, New York, NY, USA, ACM (1990) 405–413

4. Sabot, G.W.: The Paralation Model: Architecture-Independent Parallel Program-
ming. MIT Press, Cambridge, MA, USA (1989)

5. Desmet, B., D’Hondt, E., Costanza, P., D’Hondt, T.: Simulation of Quantum Com-
putations in Lisp. 3rd European Lisp Workshop, co-located with ECOOP 2006
(July 2006)

	Using Data Parallelism in Lisp for Implementing a Quantum Simulator
	Leonardo Uribe, Pascal Costanza, Charlotte Herzeel, Theo D'Hondt

