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Traditional compilers

 hybrid pipe-and-filters and data repository 
architecture

 command line parameters to change the 
order or attributes of compilation and 
optimisation
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Compilation sequence

 Ordered list of selected transformations to 
be applied to the code to be compiled.

– (Cooper et al.)
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Adaptive compilers

 Change the order of elements in the 
compilation sequence to get optimum 
compilation.

 Objectives for example

– smaller size

– faster execution

– smaller power consumption

 Choose from predefined combinations or
 try out different combinations, choose the 

one with the best results.
 Lazily optimising compilers



13.6.2004

University of Jyväskylä

Lazy optimisation

1 First time compilation without optimisation.

2 Performance data is gathered and returned to the compiler.

3 Compiler analyses the gathered data and optimises the 
compilation according this data.

4 Repeat as many time as appropriate.

Compiler

Compiled code 1

Compiled code 2

no optimisation

gathered performance

data

gathered performance

data

optimised version
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Software architecture

 "...structures of the system, which 
comprise software elements, ... 
properties ..., ... relationships among 
them." (Bass et al.)

 Compilers have two architectural styles, 
pipe-and-filters and data repository.

s ou rce ex ecu tab le
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Architecture Description 
Languages

 Used to

– describe the architecture and architectural 
elements

• components (elements), connectors, ports, roles, 
attributes, constraints, implementations

– evaluate and simulate architectures

– build the software

 XML'tised, but still not enough hype

– UML?

 My opinion: too little, too hard, too late

– Why use ADL, when we can write Java? ;-)
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ADL example
// (Source http://www-2.cs.cmu.edu/~acme/samples/pf-family-def_acme.html)
// Describe a simple pipe-filter family.  This family definition
// demonstrates Acme's ability to specify a family of
// architectures as well as individual architectural instances.
// An Acme family includes a set of component, connector, port and
// role types that define the design vocabulary provided
// by the family.
Family PipeFilterFam = {
  // Declare component types
  // A component type definition in Acme allows you to
  // to define the structure required by the type.  This structure
  // is defined using the same syntax as an instance of a component.
  Component Type FilterT = {
        // All filters define at least two ports
        Ports { stdin; stdout; };
        Property throughput : int;
  };
  // Extend the basic filter type with a subclass (inheritance)
  // Instances of UnixFilterT will have all of the properties and
  // ports of instances of FilterT, plus a stderr port and an
  // implementationFile property
  Component Type UnixFilterT extends FilterT with {
        Port stderr;
        Property implementationFile : String;
  };
  // Declare the pipe connector type.  Like component types,
  // a connector type also describes required structure.
  Connector Type PipeT = {
        Roles { source; sink; };
        Property bufferSize : int;
  };
   // Declare some property types that can be used by systems
   // designed for the PipeFilterFam family
   Property Type StringMsgFormatT = Record [ size:int; msg:String; ];
   Property Type TasksT = enum {sort, transform, split, merge};
};
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How Lisp can help?

 Have to do some research here!
 ADL in Lisp can be like domain modelling 

language:

– use it to describe the system

– use it to evaluate the system

– it actually is a Lisp programme, compile it, and 
you have the executable

 (No examples yet, sorry!)
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Compilers written in Lisp

 This idea was 
discussed a bit on 
comp.lang.lisp 
during winter 2003, 
spring 2004

 Paul F. Dietz' sexpc
(http://w w w .common-
lisp.net/project/sexpc/)

 Java compiler? 
Python? C/C++? 
Anyone?

(defun int main ((int argc) ((* * char) argv))
       ((int i)
        ((* function void (* char)) h)
        ((* char) s "abcdefghi")
        (char c))
       (setq h (ref say_hello_func))
       (h "world")
       (phooey "yo!\n")
       (duff8 (ref c) s 10)
       (cond
         ((not (> argc 1))
          (printf 
             "You didn't supply any arguments!\n")
          (printf
             "Usage: %s foo bar baz ...\n"
             (aref argv 0)))
         (else
          (for ((setq i 1)) (< i argc) ((incf i))
               (printf
                  "Your %d%s argument was: %s\n" i
                       (cond ((== i 1) "st")
                             ((== i 2) "nd")
                             ((== i 3) "rd")
                             (else "th"))
                       (aref argv i)))))
       (return 0))
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Feedback from the executable – 
Aspect-oriented Programming

 Like in lazily optimising compilers, to get 
performance data out of the executable.

 ADL/Lisp written aspects wove the data 
gathering code to the programme.

 AOP and Lisp researched a lot.
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What I would like to see...

 Architecture described in Lisp based ADL, 
rendered same time in some graphical 
notation (or vice versa), possibly imported 
from source in some other language

– McCLIM, Cello

 Code generated in an other language (just 
for those who don't understand Lisp yet)

– sexpc

 Code executed, results gathered, compiler 
adapted, code compiled, ...
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Questions?

 Q: Why?
 A1: For the fun!
 A2: Why not? There might be a big 

innovation lurking behind this... (a feel in 
the guts)

 A3: Our world is going to be more and 
more dynamic, why then should we have 
'static' compilation?

 Q: Why haven't you done it already?
 A: Just got the idea, but this is not my 

main interest, at least not yet...
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Thank you!


