
13.6.2004

University of Jyväskylä

ELaSW 2004

Software Architecture Adaptive Compilers

Jonne Itkonen

ji@mit.jyu.fi

Department of Mathematical Information
Technology

13.6.2004

University of Jyväskylä

Traditional compilers

 hybrid pipe-and-filters and data repository
architecture

 command line parameters to change the
order or attributes of compilation and
optimisation

s ou rce ex ecu tab le

13.6.2004

University of Jyväskylä

Compilation sequence

 Ordered list of selected transformations to
be applied to the code to be compiled.

– (Cooper et al.)

s ou rce ex ecu tab le

13.6.2004

University of Jyväskylä

Adaptive compilers

 Change the order of elements in the
compilation sequence to get optimum
compilation.

 Objectives for example

– smaller size

– faster execution

– smaller power consumption

 Choose from predefined combinations or
 try out different combinations, choose the

one with the best results.
 Lazily optimising compilers

13.6.2004

University of Jyväskylä

Lazy optimisation

1 First time compilation without optimisation.

2 Performance data is gathered and returned to the compiler.

3 Compiler analyses the gathered data and optimises the
compilation according this data.

4 Repeat as many time as appropriate.

Compiler

Compiled code 1

Compiled code 2

no optimisation

gathered performance

data

gathered performance

data

optimised version

13.6.2004

University of Jyväskylä

Software architecture

 "...structures of the system, which
comprise software elements, ...
properties ..., ... relationships among
them." (Bass et al.)

 Compilers have two architectural styles,
pipe-and-filters and data repository.

s ou rce ex ecu tab le

13.6.2004

University of Jyväskylä

Architecture Description
Languages

 Used to

– describe the architecture and architectural
elements

• components (elements), connectors, ports, roles,
attributes, constraints, implementations

– evaluate and simulate architectures

– build the software

 XML'tised, but still not enough hype

– UML?

 My opinion: too little, too hard, too late

– Why use ADL, when we can write Java? ;-)

13.6.2004

University of Jyväskylä

ADL example
// (Source http://www-2.cs.cmu.edu/~acme/samples/pf-family-def_acme.html)
// Describe a simple pipe-filter family. This family definition
// demonstrates Acme's ability to specify a family of
// architectures as well as individual architectural instances.
// An Acme family includes a set of component, connector, port and
// role types that define the design vocabulary provided
// by the family.
Family PipeFilterFam = {
 // Declare component types
 // A component type definition in Acme allows you to
 // to define the structure required by the type. This structure
 // is defined using the same syntax as an instance of a component.
 Component Type FilterT = {
 // All filters define at least two ports
 Ports { stdin; stdout; };
 Property throughput : int;
 };
 // Extend the basic filter type with a subclass (inheritance)
 // Instances of UnixFilterT will have all of the properties and
 // ports of instances of FilterT, plus a stderr port and an
 // implementationFile property
 Component Type UnixFilterT extends FilterT with {
 Port stderr;
 Property implementationFile : String;
 };
 // Declare the pipe connector type. Like component types,
 // a connector type also describes required structure.
 Connector Type PipeT = {
 Roles { source; sink; };
 Property bufferSize : int;
 };
 // Declare some property types that can be used by systems
 // designed for the PipeFilterFam family
 Property Type StringMsgFormatT = Record [size:int; msg:String;];
 Property Type TasksT = enum {sort, transform, split, merge};
};

13.6.2004

University of Jyväskylä

How Lisp can help?

 Have to do some research here!
 ADL in Lisp can be like domain modelling

language:

– use it to describe the system

– use it to evaluate the system

– it actually is a Lisp programme, compile it, and
you have the executable

 (No examples yet, sorry!)

13.6.2004

University of Jyväskylä

Compilers written in Lisp

 This idea was
discussed a bit on
comp.lang.lisp
during winter 2003,
spring 2004

 Paul F. Dietz' sexpc
(http://w w w .common-
lisp.net/project/sexpc/)

 Java compiler?
Python? C/C++?
Anyone?

(defun int main ((int argc) ((* * char) argv))
 ((int i)
 ((* function void (* char)) h)
 ((* char) s "abcdefghi")
 (char c))
 (setq h (ref say_hello_func))
 (h "world")
 (phooey "yo!\n")
 (duff8 (ref c) s 10)
 (cond
 ((not (> argc 1))
 (printf
 "You didn't supply any arguments!\n")
 (printf
 "Usage: %s foo bar baz ...\n"
 (aref argv 0)))
 (else
 (for ((setq i 1)) (< i argc) ((incf i))
 (printf
 "Your %d%s argument was: %s\n" i
 (cond ((== i 1) "st")
 ((== i 2) "nd")
 ((== i 3) "rd")
 (else "th"))
 (aref argv i)))))
 (return 0))

13.6.2004

University of Jyväskylä

Feedback from the executable –
Aspect-oriented Programming

 Like in lazily optimising compilers, to get
performance data out of the executable.

 ADL/Lisp written aspects wove the data
gathering code to the programme.

 AOP and Lisp researched a lot.

13.6.2004

University of Jyväskylä

What I would like to see...

 Architecture described in Lisp based ADL,
rendered same time in some graphical
notation (or vice versa), possibly imported
from source in some other language

– McCLIM, Cello

 Code generated in an other language (just
for those who don't understand Lisp yet)

– sexpc

 Code executed, results gathered, compiler
adapted, code compiled, ...

13.6.2004

University of Jyväskylä

Questions?

 Q: Why?
 A1: For the fun!
 A2: Why not? There might be a big

innovation lurking behind this... (a feel in
the guts)

 A3: Our world is going to be more and
more dynamic, why then should we have
'static' compilation?

 Q: Why haven't you done it already?
 A: Just got the idea, but this is not my

main interest, at least not yet...

13.6.2004

University of Jyväskylä

Thank you!

