
Generalized comprehensions for
Lisp

Sven-Olof Nyström

Uppsala Universitet

svenolof at csd.uu.se

Generalized comprehensions for Lisp – p. 1/16



How to express iteration in Lisp?

Do-macro
Mard to write, hard to read

Loop-macro
Powerful, but is it Lisp?

Tail-recursive functions
Might run out of memory

Prog + go
Does not belong in this century!

map, reduce, dolist, dotimes, ...
Not a general solution

Generalized comprehensions for Lisp – p. 2/16



An alternative...

List comprehensions

In Erlang, Haskell, Python, ...

Inspired by mathematical notation

�
� � �
�

� � ��
�

� � 	 	
�

� 
 � �

Powerful, convenient, popular

But only allows operations on lists

Generalized comprehensions for Lisp – p. 3/16



Goals

Implement list comprehensions in Lisp

Extend it to handle vectors, arrays, hashtables, ...

Extend it to match the loop macro

Make it extensible

Generalized comprehensions for Lisp – p. 4/16



The Lisp implementation

Example:

(collect (list) ((* x x))
(in x ’(1 2 3 4 5 6 7 8)))

Three components:

1. A collection type (decribes the object beeing built)

2. A list of expressions (giving values to be inserted)

3. One or more clauses (describe iteration)

Generalized comprehensions for Lisp – p. 5/16



Clauses...

Iterating over a list l
(in x l)
(x is bound to each element of the list)

Iterating over a vector v
(in x v)
(x is bound to each element of the vector)

Iterating over a hash table h
(in (k v) h)
(Variables k and v are bound to each key-value pair of
h)

Generalized comprehensions for Lisp – p. 6/16



More clauses...

Filter
(when b)
Only consider cases when b holds

Termination
(while b)
Stop the entire iteration if b does not hold

Side effect
(do s)
Evaluate s for side-effects

Generalized comprehensions for Lisp – p. 7/16



More clauses...

Computing values
(step v init-exp test-exp next-exp)
A for-loop

Running clauses in parallel

(for (step i 0 (< i 10) (+ i 1))
(in x l))

Bind x to the first ten elements of the list l

Generalized comprehensions for Lisp – p. 8/16



Collection types

Simple collection types

list
Build a list

vector
Build a vector

t
Last value inserted

nil
Don’t collect

sum
Sum...

(reduce f)
Combine inserted values using function f

Generalized comprehensions for Lisp – p. 9/16



Complex collection types (Examples)

hash-table
Insert the values as keys in the table

(hash-table t)
Collect key-value pairs. If many pairs have the same
key, keep the last

(hash-table list)
Build a hash-table which maps each key to a list of
values

(and so on ...)

Generalized comprehensions for Lisp – p. 10/16



Complex collection types (Examples)

(array t (10))
Build a one-dimensional array of ten elements. Needs
two values, an index and something to be inserted.

(array sum (10 10))
A two-dimensional array where values are combined by
addition. Nice for matrix multiplication. Needs three
values, two indices and a value to be added.

Generalized comprehensions for Lisp – p. 11/16


	How to express iteration in Lisp?
	�f An alternative{	t ...}
	Goals
	The Lisp implementation
	Clauses{	t ...}
	More clauses{	t ...}
	More clauses{	t ...}
	�f Collection types
	Complex collection types (Examples)
	Complex collection types (Examples)

