Revision: 1.6

1st European Lisp and Scheme Workshop

Two local optima : Lisp and Scheme

C.Queinnec?

*mailto:Christian.Queinnec@lip6.fr

CONTENT

[] Lisp and Scheme
[] and the others ...
[] and now ?

[] in quest of the next breakthrough'!

SOME MILESTONES

1958 Lisp J.McCarthy

1975 Scheme Steele and Sussmann

1984 ComMON Lisp ANSI X3J13

1997 IS Lisp ISO-TEC/JTC1/SC22/WG13

and a fractal map of variants'!

SIZES OF STANDARD

[J Scheme : 50 pages (IEEE standard)
[1 CommoN Lisp : 1000 pages (ANSI standard)
[J IS Lisp : 200 pages (ISO standard)

N T N) B

LisP vS SCHEME

sex of ()

number of namespaces
binding discipline
libraries

cultural usages

NIL
In Scheme : #f Z () # nil

() is not even a legal program and nil is not defined.

LispP;, LI1SP,

How is evaluated (f a b) ?

In Scheme, the evaluator for £, a and b is the same.

In Lisp, the evaluator for f is different. Hence the need to coerce from

one namespace to another as in

(funcall (function f) a b)
instead of
(f a b)
Algebraic unregularity
(if p (f a) (f b)) = (f (if p a b))
(if p (f a) (g a)) = (funcall (if p (function f) (function g)) a)

Lisp,,

Numerous in COMMON LISP : argumental, functional, block, type,
etc.

catch and throw do not introduce namespaces since they use values
rather than names.

BINDING DISCIPLINE

Lexical or dynamic binding discipline within COMMON LISP

Lexical only in Scheme (except for call-with-current-output-port
and other IO-related functions)

(defvar a 0)
(defun (f b)

(1list (dynamic-ref a) b))
(dynamic-let ((a 1))

(f (+1a))) — (1 2)
(f 3) — (7 3)

Lexical scope connects a text area to where a variable is usable. This
1s a static property.

Dynamic scope is related to the duration of a computation (i.e., the

extent of the stack). The dynamic environment is a run-time entity.

Dynamic scope was the scoping discipline of Lisp interpreters while
lexical scope was the scoping discipline of Lisp compilers.

Both scopes are useful though dynamic scope is harder to master.
Deployment relies on dynamic scope (think of web.xml) with
XML data and poor code abstraction. Possible solutions :

[] single language ?

[1 single IDE ? (with cross checking code, descriptor, names)

11

DIVERGENT STUFF

According to the Scheme standard : no keyword, no default value

within functions; no structure, no class, no exception, small libraries.

assq, assv, assoc (assoc key alist :eq comp)

No continuation in COMMON LISP, no hygienic macros.

12

CONTINUATIONS

(when (enough-time)

show “Continuation” slides ...

13

HYGIENIC MACROS

If z is free in a macro-expanded form then x refers to the same thing
x denotes in the definition of the macro.

(let ((results ’())
(compose cons))
(let-syntax
((push (syntax-rules ()

((push e)
(set! results (compose e results))))))

body
results))

14

CULTURAL USAGES

In Scheme : a strong bias towards (special) functions instead of

special forms.
(let/cc k (call/cc (lambda (k)
body) body))

Scheme favors programming with thunks :

(catch ’tag (lambda () body))

Less keywords implies less code for (naive) evaluation but more work
for a (real, smart) compiler.

15

1 OO OO OO O

PARTIAL CONCLUSIONS

Scheme has a simpler semantics and much less core concepts to
teach (from Simplest) : define, if, let, quote, begin, lambda,

letrec, set!, call/cc and macros.

CoOMMON LisP has numerous, important and useful libraries
CoMMON Lisp is difficult to subset

both have difficulties to exchange source code

Death of research on environments (last was InterLisp)

They share syntax and mostly functional style but do Lisp and
Scheme really belong to the same family ?

16

b O o O o oo 0O

THE INFLUENCE OF LISP

Lists (car, cdr and cons)

Data (Plist) driven programming

Lisp machine, IDE

GC, dynamic loading/linking

Linguistic laboratory (Logo, Smalltalk, Planner, etc.)
Long jumps

Fast interpreters (French school with LeLisp, DSL)

17

THE INFLUENCE OF LISP (CONTINUED)

[] Functions as regular data (closures)
[Program as data
» macros (programs can be handled)
» syntactic abstraction (DSL)

» data as program as well (sub-specific languages loop, format,
etc.)

18

NO LONGER SPECIFIC FEATURES

garbage collection nearly everywhere

[dynamically loading code nearly everywhere

[]

1 OO OO 0O O

closures in Perl, Python, Ruby, (sort of in Java with inner

classes)

long jumps (exceptions) in C, Ada, Java

objects nearly everywhere

macros : STL in C+-+, generic in Ada and Xdoclet, AOP in Java
available run-time evaluator in sh, Perl, Dynamic Java, PHP

packages nearly everywhere

19

1 OO O 0O

STILL CHARACTERISTIC FEATURES

Continuations
Some sort of reflexion
dynamic substitution of code

Generic functions a la CLOS to add behavior to already existing

objects

20

MORE SPECIFIC DON’T-HAVE FEATURES

Persistency with databases traditionally neglected but

persistency tend to migrate deeper towards OS

[] Security

CPAN killer app (Perl has a single implementation = no dialect
(only versions)) antinomic with “the application is a memory

image syndrom”.

Foreign interface (better now because of GC, control-only
language may prove interesting specially for plugins)
Autism should be finished !

21

1 OO OO OO O

POTENTIALITIES

Many possible styles (better programmers, easier to understand
XSLT or inner classes)

Programming is like writing but on mathematical

objects!

Regular syntax (S-expressions, XML, XSLT)
Macros (programs are data (MDA manifesto))
Continuations (direct style vs control inversion)
Mostly functional is provable

Plist everywhere (Lisp2)

22

FUTURE

The future will be linguistic!

designing languages (the magic of notations)
expressing facts, relationships, processes
transforming (pretty-printing, evaluating, profiling, etc.)

running

N T N) B

debugging

Lispers/schemers are good at languages.

23

CONCLUSIONS

[] Our future lies on our ability to deal efficiently with DSL

[1 'We must target our teaching on fundamental mechanisms (with
Scheme)

1 Your turn now !

