
XML challenges to programming language design

Per Bothner
<per@bothner.com>

Abstract

People are using XML-based languages for a number
of applications. The paper discusses what we can
learn from this, and various programming language
ideas and features inspired by XML applications and
tools. Some but not all of the ideas have prototype
implementations within Kawa.

1 Introduction

A number of popular “programming” languages use
XML’s syntax. Some languages are used for gener-
ating XML or HTML. Since these need to be able
to construct XML/HTML fragments, it is reasonable
to use XML syntax for constructors and perhaps the
whole language. This category includes Sun’s JSP
and W3C’s XSLT. Other languages are used to lay
out documents and GUI interfaces. These applica-
tions are characterized by nested graphical regions
that may have different properties, such as size, font,
and color. Using XML attributes to specify optional
properties works quite well, and matches what people
are used to from HTML. Examples of such languages
include Mozilla’s XUL [XUL], Microsoft’s XAML
[XAML], and W3C’s XSL-FO. These and other lan-
guages succeed in spite of XML’s clumsy syntax, even
though Lisp-like languages have long provided a more
flexible and compact notation for expressing nested
data structures. While the XML world could learn
from the Lisp world, there are also some interesting
things for Lisp people to learn from XML. Of course
Lisp people have long provided libraries and ideas for
XML processing.

In this article I will make my own suggestions. Some
of these ideas and features have been implemented

with the Kawa [Kawa] framework, which is both a
Scheme implementation written in Java, and a com-
piler framework for compiling high-level languages to
Java bytecodes. See particularly my KRL dialect,
which is based on Bruce Lewis’s BRL, and my new
Q2 proto-language.

2 Data constructor syntax

We need a good syntax for constructing nested ob-
jects. In many simple programs most of the program
consists of constructors, so it is good to have an ef-
ficient syntax, and avoid noise keywords such as new
or make. We need a convenient syntax for attributes
or keyword parameters.

We also need syntax for function calls, as well as syn-
tax for control structures such as loops and condition-
als. JSP uses XML syntax for all of these, and there
are popular “tag libraries” which are essentially func-
tion libraries whose functions are called using XML
syntax. The XQuery [XQuery] language, while pow-
erful and elegant in many ways, has a more tradi-
tional mixed-style syntax, with XML constructors in
XML syntax, but function calls and expressions closer
to C/Java syntax. There are some advantages to us-
ing different syntactic styles for different operations,
but it does make it harder when you need to change
or refactor your code.

Lisp languages of course has a unified syntax for func-
tion application and data structures, but we still need
a way to distinguish the two. The traditional mecha-
nism is to use quotation or quasi-quotation for data,
and some XML-in-Lisp embeddings use quotation
conventions. However, quotation is a read-time op-
eration, and returns values that are fixed early. Too
early if you want to associate richer type information

with the data structures, perhaps because you want
to do schema validation, or use different object types
for diffent element tags.

My suggestion is to distinguish function calling from
object construction not by syntax, but to distinguish
them using name lookup. This requires a declaration
of the element type, though I show below how use of
namespaces makes this convenient.

(define (process-para p) ...)
;; Define para as a constructor for a
;; type with mixed child content.
(define-element para mixed)

(process-para
(para (string-upcase "data")))

This yields, in XML syntax:

<para>DATA</para>

3 Typed node values

Some XML/HTML-producing languages, such as
JSP and PHP, generate textual XML output. I.e.
web pages are produced by explicitly or implicitly
writing strings to a special file. This is OK when the
goal is just generating web pages, but awkward if we
want to be able process existing XML data, Further-
more, the result of a constructor should have a real
type, distinct from lists or vectors. In other words,
an element constructor returns an object.

The “standard” representation of XML elements and
other node types is W3C’s DOM interface, but that
may not always be the best representation. We may
want to customize the class used to represent a spe-
cific element type (as in JAXB). In that case XML
is just a special input/output representation, and the
structure of the XML file might not directly match
the internal representation.

Both DOM and the more abstract XQuery/XSLT
data model allow you to directly access a parent ele-
ment from a child node. This requires a lot of either
re-parenting or (conceptual) copying, which is awk-
ward. Lisp’s model where you can get at the children
from a parent but not vice versa seems preferable.

Instead, we can reference a node indirectly using the
path we used to access it, rather like a Unix filesys-
tem, which distinuishes file names from inodes. A
path is a pointer, but it also includes a trail of parent
pointers, so we can easily get to parent and sibling
nodes.

4 Namespaces

XML, like Common Lisp’s package system, uses two-
level names: A qualified name consists of a local (sim-
ple) name, and a globally-unique URI (URL). The
URI corresponds to a Common Lisp package, but
a URI is a string, rather than an object. Qualified
names (QNames) match if both the local name and
the URI are the same, which in practice is not very
different from interned Common Lisp symbols, which
are the same if the local name and the package are
the same.

In a Lisp program we write symbols using package
prefixes, while in an XML we write qualified names
using a namespace prefix, a colon, and a local name.
A difference is that in Lisp the set of package names
(and nicknames) is maintained in a global table, while
in XML there is a local mapping from namespace
prefix to URI. This mapping is part of the lexical
scope rather than the global scope. I think that is
a better solution, as it it lets different modules use
different short prefixes. Note that in Common Lisp
resolving a name to a symbol is a read-type operation.
I suggest it should be done at the same time as macros
and special forms are recognized. This allows let-
forms to define local namespace aliases (nicknames).

The Kawa keyword define-namespace defines a
name as a prefix that aliases a namespace URI. At
the same time it implicitly declares all the functions
that use the same prefix to be constructors that
when called create node objects. It is reasonable
to also provide a let-namespace keyword, though
Kawa does not currently do so.

(define-namespace xhtml
"http://www.w3.org/1999/xhtml")

(xhtml:p "some text "
(let-namespace

(math "http://.../MathML")
(math:xx))

If you print this using XML syntax you might get:

<xhtml:p
xmlns:xhtml="http://www.w3.org/1999/xhtml">
some text
<math:xx
xmlns:math="http://.../MathML"/>

</xhtml:p>

An imported module can be bound to a namespace
prefix:

(import mat <matrix-functions>)
(mat:transpose (mat:zero 2 3))

5 Sequences

The XQuery 1.0 and XSLT 2.0 languages use se-
quences in an interesing way. Such a sequence differs
from the Common Lisp concept of the same name
in that you cannot directly nest sequences. Equiva-
lently, there is no difference between a value and a
singleton sequence consisting of just that value. In
that respect a sequence is similar to Lisp/Scheme’s
“multiple values”. However, a sequence is a first-class
value in that a variable or parameter can be bound
to a sequence. (Kawa represents an XQuery sequence
and Scheme multiple values the same way.)

One might think that non-nestable sequences are too
limiting, and of course a language needs a way to
provide nested data structures. We’ll discuss arrays
and nodes later. Non-nestable sequences do provide
a nice functional model for composing program frag-
ments, as we’ll see.

6 Statements are expressions

Scheme and Common Lisp are expression-oriented
“mostly-functional” languages, but the looping and
prog constructs don’t fit very smoothly into this.

First consider the Scheme <body> syntax, which is
one or more declarations or expressions, and whose

result is that of the final expression. We can modify
the definition so that the result is the sequence re-
sulting from concatenating all the sequences result-
ing from the sub-expressions. We also define declara-
tions, assignments, and similar statements to return
zero values. Most existing code should work as is.
When needed, a discard function can be used to ig-
nore all its argument values, returning zero values.
The concatenation operator becomes the same as the
statement separator operator; in a non-Lisp-syntax
language both might use semi-colon or line separa-
tors.

If evaluating a loop results in the concatenation of the
values from each iteration, then the value of a loop is
the same as unfolding the loop to yield a statement
sequence, which is very intuitive behavior. Using se-
quence concatenation in this way yields pleasant and
natural semantics for expression languages. As the
XQuery language shows, it also it is very convenient
for processing XML and similar data structures.

Here is an example:

(define x
(let r ((i 0))
(+ 100 i)
(if (< i 5)
(r (+ i 1)))

i))

Each time r’s body it evaluated it yields two val-
ues: initially the result of (+ 100 i) and finally the
parameter i. In between is a recursive call. All the
values are appended, yielding a sequence of 10 values:

100 101 102 103 104 105 5 4 3 2 1 0

The FLWOR-expression of XQuery is a powerful
and elegant way to map over sequences. Loosely, a
FLWOR-expressions iterates over a sequence, and for
each item in the sequence it binds a local variable,
and evaluates an expression within that scope. The
result is the concatenation of all the results. Common
Lisp has a whole set of mapping functions, including
mapcar which is the list of results of applying a func-
tion, and mapcan is the concatentation of lists result-
ing from applying a function. We don’t need this if
sequences are unnested. A simple Scheme syntax:

(do-each (var sequence)

body)

This evaluates sequence. Then each value yielded by
sequence is bound to var, and body is evaluated. The
value of the do-each is the concatenation of the result
of each evaluation of body.

7 Arrays

Since sequences don’t nest, we need a real data struc-
ture that supports nesting. An array is single value
that contains a multi-dimensional mapping from in-
teger tuples to sequences. Usually each component
of an array is a single value, but there seems to be
no reason to disallow sequences of other lengths, es-
pecially for modifiable arrays. If our language is like
Scheme in supporting first-class functions using the
same namespace as other values, then it seems rea-
sonable to use function call syntax for array indexing.
APL-like array operations correspond to higher-order
functions.

The primary operations on sequences are concatena-
tion and iteration; the primary operation on arrays is
indexing. It follows that a string should be a sequence
of characters, not an array of characters: Random
access in a string is not a semantically meaningful
operation.

8 Attributes and keywords

XML elements may have named string-valued at-
tributes, which are useful for specifying optional
properties. Such attributes are similar to keyword
parameters, so it makes sense to use the same syntax
for both. XML attributes come before the “body”
or “children” of the element, while in Common Lisp
(and many other languages with keyword param-
eters) the keyword parameters come after the un-
named parameters. Listing the attributes first makes
sense when attributes tend to be shorter, or their
value may influence the processing of the main con-
tents. These concerns suggest we follow XML con-
ventions.

XML attribute values are restricted to string values,

while Lisp keyword parameters may be arbitrary val-
ues. However, it is worth noting that the “meaning”
of an attribute may be defined by a schema as having
a typed value (“hatsize” being the canonical exam-
ple). In any case our XML-friendly language will of
course allow arbitrary expressions yielding arbitrary
values.

9 Patterns

In XQuery a parameter list is a tuple of parameters,
each of which may be bound to a sequence. An alter-
native model is to make the entire parameter list be a
sequence. This makes it easier for functions to have a
variable number of parameters - essentially they have
a single sequence parameter. Thus there is no need
for Scheme’s separate apply or call-with-values
methods. On the other hand, you cannot have two
parameters both of which takes a sequence.

If there is logically only a single parameter, then the
function definition needs a way to split the sequence
up. ML-style pattern matching is an elegant solu-
tion. Extending these to nested regular patterns, as
in some XML-oriented functional langues like CDuce
[CDuce], is very elegant and powerful. The syntax
of such patterns is an open question, especially in a
Lisp-like language, but here is one possibility:

(define (map-body fun
(xhtml:html
(xhtml:head h)
(xhtml:body b)))

(xhtml:html (xhtml:head h)
(xhtml:body (fun b))))

This assumes that the prefix xhtml: prefix has been
decleared such that functions in that namespace are
element constructors. The function map-body is de-
fined to match against a sequence of two values,
where the first value is a function that gets bound
to the variable fun. An element constructor in a
pattern matches against an actual parameter value
constructed using that constructor, so the second ar-
gument value must match an html element that con-
tains a head child followed by a body child. The for-
mal parameter variables h and b are matched against
the contents of that head and body elements. The

body of the function applies the function fun to the b
value, and constructs modified head, body, and html
elements.

Fitting keyword parameters into this model matching
can be done different ways. We could follow Com-
mon Lisp in treating a keyword parameter as a two-
element sequence consisting of a keyword and a value.
However, taking apart a parameter list using a pat-
tern is probably easier if we treat a keyword-value-
pair as a combined “attribute value”. This allows a
keyword parameter to be a sequence. In this model:

(foo font: "Helvetica"
style: (values ’bold ’italic))

is syntactic sugar for:

(foo (attribute ’font
"Helvetica")

(attribute ’style
(values ’bold ’italic)))

10 Graphics: Models and
Views

Mozilla’s XUL and Microsoft’s XAML languages are
convenient ways to describe the graphical layout and
structure of a GUI window as hierarchical structure,
using XML syntax similar to expressing a web page
in HTML.

<button label="Yes"
image="yes-image.png"
oncommand="yes-action" />

The behavior of the application has to be expressed
using a different programming language, for exam-
ple JavaScript. A better integrated language as de-
scribed above could describe both display and behav-
ior more conveniently:

(button label: "Yes"
image: "yes-image.png"
oncommand:
(lambda ()

(format #t
"Yes button pressed! % !")))

Both XUL and XAML describe the “view” aspect of
an application. but they don’t support model-view
separation. Using a real programming language with
variables and functions can do that. The UI library
defines two classes of “GUI objects”: A model value
is collection of data. It may have a default way it
is displayed, but it can also be transformed by an
affine transform, and it may be displayed multiple
times at once. A view value represents actual “screen
real estate”: an actual window or sub-window. Views
may be nested inside other views, but any given view
only appears once. A model constructor is a func-
tion that returns a model, while a view constructor
is a function that returns a view. The parameters
to a view constructors may be other (usually nested)
views, model values (to be displayed in the view), or
other values. If the parameter of a view constructors
is a model where is a view is expected, a model may
be converted to a view using a default view construc-
tor.

Here is a simple example, where an image (a model)
is used twice, once transformed, in a taskbar:

(define left-arrow
(image "left-arrow.png"))

(define right-arrow
(flip-vertically left-arrow))

(taskbar
(button label: "Back"

image: left-arrow
oncommand: back-command)

(button label: "Next"
image: right-arrow
oncommand: next-command))

Notice how various optional properties are specified
using keyword parameters. Typesetting an article
like this can also use keyword parameters:

(paragraph slant: ’italic
"This is important!")

Alternatively one can use functions:

(paragraph
(italic "This")
" is important!")

The function function italic returns an “italic ver-
sion” of the argument, while the function color takes

a color followed by one or more aruments to be dis-
played in that color. All of these work on models,
and so the results are values that can be displayed
many times. What does this mean? Consider:

(define blue-this
(color ’blue "This "))

(define warning
(color ’red
blue-this
"is important!"))

blue-this
(italic warning)

The result should be a blue non-italic This followed
by an blue italic This followed by a red italic is
important!. That means a function like color
should change the default color, but it should not
change the color property of any characters that al-
read have a color property. (There might be a sep-
arate force-color function that does override any
color properties in the arguments.) An easy way to
implement color is that it just creates a data struc-
ture referencing the arguments. When that value is
typeset or displayed using a “graphics context”, we
save the graphic context’s current color, change the
color, display/typeset the arguments, and then re-
store the color. To display/typeset the arguments
may involve nested color or font changes.

11 Lexical structure

Most of these ideas are compatible with different lex-
ical syntaxes, though above I’ve assumed a Scheme-
like syntax. A C/Java-like syntax is also possible,
with a few more changes, including adding keyword
function arguments. I have also explored a more
Haskell-like syntax, which uses juxtaposition for func-
tion calls, and structure using white space and inden-
tation. It is also appealing to use juxtaposition for
tuple concatenation, though using juxtaposition for
both application and concatenation might be confus-
ing.

12 Links and more information

I name “Q2” refers to the language and implemena-
tion where I’m trying out these and other ideas. For
more on Q2 see (http://gnu.org/software/kawa/q2).
The implementation, such as it is, included in the
Kawa (http://gnu.org/software/kawa) source tree.

References

[CDuce] Benzaken, Castagna, and Frisch.
CDuce: an XML-Centric General-Purpose
Language ICFP SIGPLAN 38(9). 2003.
(http://www.cduce.org/).

[Kawa] Per Bothner. Kawa: Compiling Scheme to
Java Lisp Users Conference (Berkeley). 1998.
(http://www.gnu.org/software/kawa/).

[XAML] Microsoft. “Longhorn” Markup Language
(code-named “XAML”) Overview (http://
longhorn.msdn.microsoft.com/lhsdk/core/
overviews/about%20xaml.aspx).

[XQuery] XQuery 1.0: An XML Query Language
(http://www.w3c.org/XML/Query).

[XUL] Mozilla. XML User Interface Language
(XUL) (http://www.mozilla.org/projects/
xul/).

