
Pico: Scheme for Mere Mortals.

Wolfgang De Meuter, Theo D’Hondt, and Jessie Dedecker
{wdmeuter, tjdhondt, jededeck}@vub.ac.be

Programming Technology Lab
Vrije Universiteit Brussel

Pleinlaan 2 - 1050 Brussels - Belgium

Abstract. In this paper we present the results of an extensive experi-
ment to adapt a Scheme-like programming language called Pico to the
requirements of a less-than-willing contemporary computing audience.
Pico is a Scheme derivative that is equally powerful in the sense that
everything – including programs and continuations – is first class. Yet,
Pico uses classic infix syntax and fixed size arrays without losing the el-
egance and expressiveness of Scheme’s list-based approach. Pico has no
special forms but replaces Scheme’s keywords by ordinary function calls.
The paper enumerates Pico’s major design concerns and speculates on
their usefulness in a more general setting.

1 Introduction.

Scheme is arguably one of the most concise, expressive and elegant programming
languages ever built. It is also the vehicle for SICP [sicp], one of the most re-
markable visions on computing written down on paper. The application of both
the language and the vision in an educational context have generally led to a
kind of computational power-training unrivaled by other approaches.

Nevertheless, the use of Scheme in teaching has been in constant decline for
the past decennium. The reason is not difficult to identify: the resistance of the
general computing public to a less than canonical language has been rising dur-
ing this same period. History seems to be at the recurring point where many are
focused on solving problems using one universal language and insofar it is stat-
ically typed, class-based and garbage collected most seem satisfied. The result
of course is that we have reached a low point in linguistic diversity; fewer and
fewer professionals master fundamental concepts (ask recent computer science
graduates to explain the difference between a closure and a continuation and
prepare to be surprised) and they go happily about re-inventing a concept every
time the need for one manifests itself.

On the other hand, the internet is a breeding ground for whole new gener-
ations of software applications. And we cannot but question the suitability of
current development practice to many of the new requirements. Consider for
instance the painful application of reflection in the Java programming model or
the poor grade of data interchange formats introduced by XML.

Enter Scheme, or at least a programming model similar to Scheme that can
lure people away from their day-to-day practice and expose them to the rich

diversity of programming concepts in an easily recognizable setting. In the spirit
of Scheme we aim for a simple set of basic constructs; a language emerges as their
closure. But this process is effectively a balancing act: the expressiveness and
elegance of the language semantics should not trivialize the external syntax to
the point where it becomes unattractive. On the other hand, syntactic constructs
should not invalidate the semantic power of the language.

This paper describes Pico1, a language in which we seek such a balance.
It is the result of several years of experimentation with generations of non-CS-
major students at undergraduate and graduate level who unwittingly became co-
designers. Pico is very close to Scheme in spirit; it features strong and dynamical
typing, static scope, first class everything. However, it has a significantly different
syntax without special forms, thanks to a richer parameter binding semantics.
Also, Pico uses tables rather than pairs as basic data structure. Consequently
Pico has a look-and-feel which is different from Scheme and which would seem
to make it more appealing to a contemporary audience.

A coarse estimate2 indicates that essential programming concepts can be
acquired using Pico in less than half the time it takes using Scheme. But although
initially Pico was only used for teaching [pico], its expressiveness made it a
suitable candidate for research oriented experiments relative to code mobility
[borg], prototype based inheritance [lmo] and distribution [soap].

Pico is indeed the result of a balancing act and an analytical mind may
consider certain of its features as somewhat redundant. However – slightly mis-
quoting Leibniz – we chose that which is the most simple in hypotheses and
the most rich in phenomena. And simple does not necessarily signify least in
number.

2 Pico basics.

Consider the Pico code fragment in figure 1. It features a higher order function
set that accepts an arbitrary list of items (actually either numbers or strings).
set returns a member predicate that decides whether its argument Item belongs
to the originally specified set of Items.

The implementation is fairly straightforward: set constructs a binary tree
(using the function add) which is stored in the local variable TREE. The returned
predicate member uses a local function get to traverse TREE.

This example illustrates several of Pico’s features:

– constant, variable and function declarations using : and ::
– table access using standard [...] notation
– variable and table assignment using :=
– compound expressions using { and } delimiters

1 as in 10−12, i.e. very small.
2 comparing first year programming courses for mathematics (Pico) and computer

science (Scheme) undergraduates.

– compound values using [and] delimiters
– canonical and applicative parameter lists (the latter using the @ symbol)
– first class argument lists via the use of @
– call-by-name parameter binding in the definition of add
– the use of infix operators
– the use of control structures such as if and for in standard function notation

set @ Items:

{ nbr_idx:: 1;

lft_idx:: 2;

rgt_idx:: 3;

get(Item, Node):

if(is_table(Node),

if(Item > Node[nbr_idx],

get(Item, Node[rgt_idx]),

get(Item, Node[lft_idx])),

Item = Node);

add(Item, Node, Thunk(Tree)):

if(is_table(Node),

if(Item > Node[nbr_idx],

add(Item, Node[rgt_idx], Node[rgt_idx]:= Tree),

add(Item, Node[lft_idx], Node[lft_idx]:= Tree)),

if(Item > Node,

Thunk([Node, Node, Item]),

if(Item < Node,

Thunk([Item, Item, Node]))));

if(size(Items) = 0,

member(Item):: false,

{ TREE: Items[1];

for(idx: 2, idx<=size(Items), idx:=idx+1,

add(Items[idx], TREE, TREE:= Tree));

member(Item):: get(Item, TREE) }) }

Fig. 1. example of Pico code

Figure 1 illustrates what Pico code typically looks like. It is syntactically
close to a generally accepted format and it is conceivably more accessible than
Scheme for a broad range of individuals, be they Java programmers or calculus
adepts. But anyone familiar with Scheme will not fail to recognize its impact on
the design of Pico, even from this small example.

For the rest of this section we will address the top ten concerns that have
driven us in our design of Pico.

2.1 Concern #1: a straightforward syntax using a regular grid.

Pico features a fairly rich syntax that nevertheless takes less than one page to
formulate. It incorporates a conventional operator syntax (see concern #2) but
does not require the artifact of special forms (see concern #3). A limited set of
syntactic tokens fixes the structure of a Pico program (to wit: matched quotes,
parentheses, brackets and braces, period, comma and semicolon separators, com-
pleted by @, :, :: and :=). A fundamental notion is the invocation which is either
a reference, a tabulation or an application. An invocation is used in four modes:
access, variable definition, constant definition and assignment.

This structure is captured in the grid in figure 2. It illustrates how twelve
different Pico program expression types are constructed by combining the three
invocation types into the four modes. An actual Pico evaluator is essentially
required to provide specialized interpreters for these twelve expressions3.

invocation

invocation: expression

invocation:: expression

invocation:= expression

variable

x

v: 123

c:: 123

v:= 123

tabulation

t[idx]

t[10]: x()

t[10]:: y()

t[10]:= 0

application

f(1, x)

f(x): x+x

f(x):: x*x

f(x):= -x

variable/constant

 reference

variable definition

constant definition

variable assignment

table indexing

variable

table definition

constant

table definition

table modification

function call

variable

function definition

constant

function definition

function redefinition

Fig. 2. Pico syntax grid

2.2 Concern #2: operator notation as syntactical construct.

Pico recognizes prefix and infix operator syntax. Essentially the following syn-
tactic equivalences hold:

operator(expression) ≡ operator expression

operator(expr1, expr2, ...) ≡ expr1 operator expr2 operator ...

for all applications of an operator, i.e. a concatenation of characters from the
set:

{ < , = , >, #, ~, $, %, +, - , | , &, * , /, \ , !, ? , ^ }
3 a metacircular definition for these twelve routines requires about 200 lines

This set is partitioned into:

Rel = { < , = , >, #, ~ }
Add = { $, %, +, - , | }
Mul = { &, * , /, \ }
Pow = { !, ? , ^ }

with Rel � Add � Mul � Pow. Operator precedence is defined as follows:

p φ q ψ r
= (p φ q) ψ r iff φ ≥ ψ
= p φ (q ψ r) iff φ < ψ

The precedence between 2 operators φ and ψ is defined by

φ < ψ iff initial(φ) ε V, initial(ψ) ε W and V � W

Consider as an example the following definitions:

a++b: a+b+1
a**b: a*b*2
p<=>q: abs(p-q)<1

Applying the above precedence rules, 1++2<=>1**2, will return true.

2.3 Concern #3: avoiding special forms via call-by-function.

Pico does not require special forms in order to support block structure, recursion,
conditionals, etc. It features a richer parameter binding semantics than Scheme in
order to introduce an applicative order mechanism; but this particular extension
of formal parameters is completely integrated in the Pico spirit.

Whenever a Pico function is defined, the programmer has the option of spec-
ifying a formal parameter as an invocation (see concern #1). A parameter speci-
fied as a reference will be bound by value at application time; but if it is specified
as an application we will have an extension of call-by-name, which we will label
call-by-function. Consider the example in figure 3.

map(f(val), tab)::

{ idx: 0;

res[size(tab)]:: f(tab[idx:=idx+1]) }

Fig. 3. example of call-by-function

The function map implements a Scheme-like map: a call to map(val*val, [1,
2, 3, 5, 7]) generates [1, 4, 9, 25, 49]. In this particular example, the
call-by-value parameter tab will be bound to the value of [1, 2, 3, 5, 7]

while the call-by function parameter f(val) will be bound to the expression
val*val. This actually means that during the application of map a local vari-
able f will be bound to a closure consisting of the parameterlist (val), the body
val*val and the calling environment of map4.

The package in figure 4 seeks inspiration in the λ-calculus in order to provide
basic booleans in Pico. Note that true and false are binary functions and
that conjunction, disjunction and negation are effectively implemented as Pico
operators. Both & and | perform lazy evaluation, thanks to the use of call-by-
function.

{ true(consequent(), alternative())::

consequent();

false(consequent(), alternative())::

alternative();

p&q()::

p(q(),false);

p|q()::

p(true,q());

!p:: p(false,true) }

Fig. 4. a boolean package

We conclude this subsection with a simple implementation of a Pico while
iterator (see figure 5).

while(predicate(), expression())::

{ loop(value, boolean)::

boolean(loop(expression(), predicate()), value);

loop(void, predicate()) }

Fig. 5. a Pico while iterator

2.4 Concern #4: variable arity through first-class parameter lists.

Pico features first-class parameter lists by means of the @ construct5. Whenever a
function is defined with a @-based application, the reference (or other invocation)
following the @ will be bound to a table of argument values during application.

4 note that val has dynamic scope
5 reminiscent of the Scheme apply, but in this case @ is a syntactical construct

begin@tab:: tab[size(tab)] table@tab:: tab

Fig. 6. variable arity in Pico

Two simple examples in figure 6 suffice to illustrate the usefulness of @. The
function begin accepts one or more arguments, evaluates them one by one, and
returns the last value. begin serves as a compound expression constructor which
is typically used to such an extent that the Pico parser provides syntactic sugar
to minimize parenthesis paralysis:

begin(exp1, exp2, ... , expN) ≡ {exp1; exp2; ... ; expN}

The function table accepts zero or more arguments, evaluates them one by
one, and returns a table containing all of the resulting values. table serves as
a compound value constructor; in analogy to begin, the Pico parser provides
syntactic sugar:

table(exp1, exp2, ... , expN) ≡ [exp1, exp2, ... , expN]

2.5 Concern #5: recursion through function naming.

Pico requires that all functions be named6 – and consequently, λ-expressions are
absent from Pico. The evaluation of a function definition:

fun(par, ...): body

results in a closure being bound to fun. The static environment present in this
closure will specifically contain this binding in order to support recursion7.

Anonymous functions (λ-expressions) are typically used as a filter in collec-
tion oriented operations or are passed around as thunks (see figure 1). Figure 3
is an example of the former; it could however also have been written as in figure
7 and used as in map(f(val): val*val, [1, 2, 3, 5, 7]). We use the first-
class-everything property of Scheme and pass a function definition as argument
to map8.

6 which proves beneficial to debugging.
7 this is reminiscent of the Scheme letrec construct; but contrary to Scheme which

features four variants of the let-structure, functions are the only scope constructor
in Pico

8 contrary to Scheme, where a define is not allowed as an argument to a function.
However, in map(f(val): val*val, ...) the scope of f is no longer the body of
map, which is why we prefer the call-by-function solution

map(f, tab)::

{ idx: 0;

res[size(tab)]:: f(tab[idx:=idx+1]) }

Fig. 7. figure 3 revisited

2.6 Concern #6: composite values using tables.

Pico proposes tables for the composition of values. A table is instantiated as an
in-line value (see concern #4) or by using basic syntax 9. Figure 8 for instance
defines a 3-dimensional unit matrix [[1, 0, 0], [0, 1, 0], [0, 0, 1]].

{ unity[3, 3]: 0;

for(i: 1, i<=3, i:= i+1, unity[i, i]:= 1) }

Fig. 8. a unit matrix

The fact that Pico tables require dedicated syntax constructs is inspired by
common practice; but at the same time it provides a richer semantics. This is
illustrated by figure 9 which binds [[1], [2, 3], [4, 5, 6]] to triangle.

{ i: j: 0;

triangle[3]: t[i:= i+1]: j:= j+1 }

Fig. 9. a triangular matrix

This example shows that during the definition of a table, the initialization
expression is re-evaluated for each table slot. Actually, figure 8 could have been
written as follows:

{ idx: 0; unity[3,3]: if((i:=i+1)\\4 = 0, 1, 0)}

Fig. 10. the unit matrix revisited

Pico tables are sufficiently expressive as to support list structures. Consider
the Pico code in figure 11: it provides an implementation for Pico’s own environ-

9 contrary to Scheme, where native functions are used to create and manipulate vectors

{ add(nam, val, env):

[nam, val, env];

get(nam, env):

if(is_void(env),

error("undefined identifier: ",nam),

if(env[1] = nam,

env[2],

get(nam, env[3])));

set(nam, val, env):

if(is_void(env),

display("undefined identifier: ", nam),

if(env[1] = nam,

env[2]:= val,

set(nam, val, env[3]))) }

Fig. 11. an environment implementation

ments (see concern #7) using a linear list and add, get and set functions that
support creation, access and modification of bindings10.

2.7 Concern #7: abstraction through first-class environments.

Pico environments are implemented as name–value association lists (see concern
#6). Defining a variable or a constant pushes a new association onto the current
environment; a reference to a variable or a constant requires a sequential search
of the current environment. Hence, there are no explicit scope levels, but static
scope with hiding of homonyms is effectively supported – however, duplicate
variables or constants are allowed within the body of a function.

Stack(n):

{ T[n]: void;

t: 0;

empty():: t = 0;

full():: t = n;

push(x):: { T[t:= t+1]:= x; void };

pop():: { x: T[t]; t:= t-1; x };

capture() }

Fig. 12. a stack abstraction

Contrary to Scheme, Pico environments are first class: the current environ-
ment is accessible to a Pico program by way of the capture native function.
10 this is actually very close to the actual implementation of Pico environments; it

provides a very simple and clean view on an essential part of Pico semantics

Using the dot-notation, invocations may be qualified by an environment and the
invocation identifier will be looked up in said environment and used, provided it
was defined as a constant11. First-class environments introduce data abstraction:
see figure 12. The environment S: Stack(10) is accessible via expressions such
as S.push(123); S effectively implements a stack.

First-class environments provide a very simple module system that consti-
tutes a first step towards objects (see [lmo] for the description of an implemen-
tation of prototype-based inheritance on top of Pico).

2.8 Concern #8: control through first-class continuations.

Pico features first-class continuations, i.e. values with a unique type, that hold
the computational state of the Pico evaluator 12. Pico provides a native function:

call(expression(continuation)):: ...

which evaluates the argument of an application of call with respect to a tem-
porary extension of the current environment with a binding to coninuation of
the current continuation (i.e. the current Pico computational state). A second
native function:

continue(continuation, expression):: ...

reactivates continuation substituting the value of expression for the value of
the current computation13.

{ raise(id, retval): error("UNCAUGHT EXCEPTION");

trycatch(try(), filter(exception), catch(exception, value))::

call({ keep:: raise;

raise(id, retval):=

{ raise:= keep;

if(filter(id),

continue(continuation, catch(id, retval)),

raise(id, retval)) };

result: try();

raise:= keep;

result }) }

Fig. 13. an exception handler

11 visibility is effectively enforced by choosing between the : and the :: syntax
12 contrary to Scheme, where closures are overloaded in order to support continuations
13 this is the same semantics as in Scheme

Pico continuations can be used to build familiar constructs; in figure 13 we
suggest a Pico implementation for a conventional exception handler.

As an example of using this exception handler, consider figure 14 where a
negative discrimant of a quadratic equation is caught.

{ root(a, b, c)::

{ d:: b^2 - 4*a*c;

if(d = 0,

-b/2/a,

if(d > 0,

[(-b + sqrt(d))/2/a, (-b - sqrt(d))/2/a],

raise("noRoots", d))) };

safe_root(a, b, c)::

trycatch(root(a, b, c),

exception = "noRoots",

display("discriminant was negative: ",value)) }

Fig. 14. using the exception handler

2.9 Concern #9: code as data through a unified abstract grammar.

The Pico evaluator is based on a unified abstract Pico grammar 14. In the spirit of
the selection of tables as composite value constructors (see concern #6), abstract
grammar nodes are a generalization of tables15.

Figure 15 gives an overview of the Pico abstract grammar. Italics refer to
meta-values, an environment is either void, a constant or a variable, an
invocation is as in concern #1, arguments are mostly tables but can be any
expression whenever the @ application syntax is in effect. A thread is actually
a list of frames and is more structured than indicated in figure 15.

In Pico, the abstract grammar of expressions and values is accessible via a
set of native functions. make, get and set allow the creation and the access to
the slots of abstract grammar nodes 16. Tags (the upper-case labels in figure 15
are referred to as natural numbers [0, 1, ...].

In addition to these, Pico allows reflective access to read, eval17 and print
in addition to providing a quotation syntax.

14 unified refers to the fact that the abstract grammar incorporates both expressions
and values

15 generalization in the sense that a table is a particular kind of abstract grammar node
16 these functions validate their arguments so as to avoid violating the Pico semantics
17 contrary to Scheme

reference ::= REF text

application ::= APL expression arguments

tabulation ::= TBL expression table

qualification ::= QUA expression invocation

declaration ::= DCL invocation expression

definition ::= DEF invocation expression

assignment ::= SET invocation expression

constant ::= CST text expression environment

variable ::= VAR text expression environment

continuation ::= CNT environment thread

thread ::= THR expression*

native ::= NAT text number

function ::= FUN text arguments expression environment

quotation ::= QUO expression

table ::= TAB expression*

text ::= TXT text

fraction ::= FRC fraction

number ::= NBR number

void ::= VOI

Fig. 15. Pico abstract grammar

2.10 Concern #10: uniformity through a single memory model.

This last concern is more of an implementation concern, but it crosscuts the
design of Pico in its entirety. Pico uses a single memory model for the repre-
sentation of all entities manipulated by its virtual machine18 and uses a single
memory space and a unified garbage collector . Every single Pico value or expres-
sion is stored in this unique memory space, according to the abstract grammar
in figure 15. The latter can effectively be viewed as the instruction set for the
Pico virtual machine.

Environments are first-class Pico values (see concern #7) and consist of linked
lists of bindings, i.e. constant or variable abstract grammar nodes. In a similar
vein, computation in the Pico virtual machine uses a linked list of frames, called
a thread. Since threads are first-class, they can be garbage collected, combined
with an environment into a continuation (see concern #8) and even used to
introduce distributed programming into Pico featuring strong mobility [borg].

18 contrary to Scheme, which typically uses several memory spaces to hold environ-
ments, pairs, vectors, strings, etc.

3 Assessment, conclusion and suggestions.

Originally, Pico was prototyped in Scheme and then ported to C. This prompted
the idea of a single memory manager19. Next, a complete meta-circular20 Pico
version was developed, serving as human-readable specification21 of the lan-
guage.

Pico was designed with little regard for efficiency – and none at all if it
compromised the semantical clarity of the language. Obviously, constructing
environments as simple linked lists impacts the performance of Pico enormously.
But we have chosen to maintain this concept because of its influence on a novice
programmer’s understanding.Moreover, the use of first-class environments as
modules and allowing nested parameters in call-by-function parameters voids all
possibility for introducing a lexical addressing scheme22.

The introduction of Pico-styled call-by-function may possibly raise some eye-
brows because of its – albeit limited-introduction of dynamic scoping. But in our
opinion, and referring to [lmo], this may do more good than bad, certainly in a
teaching or prototyping context.

But by and large the most successful contribution of Pico rests with its
regular syntax and semantics. A novice Pico programmer masters the grid in
figure 2 in matter of hours and the combination of the first-class everything
and functions-everywhere goes a long way to ensure that. But an experienced
programmer will also appreciate this basic Pico property: it is indeed possible
to master all of Pico’s features on short notice; and this is certainly not true for
most main-stream languages – including Scheme.

Using a meta-circular implementation to document the semantics of a lan-
guage is not new. And contrary to Scheme, where only a small subset op the
language is involved (see for instance [sicp]) we propose a complete implemen-
tation of Pico in Pico. Thanks to the compactness of the language the result
is still very accessible to Pico programmers – even novice ones. And short of a
complete and formal specification23 a meta-circular implementation is the only
reasonable way to expose a member of the general programming public to the
semantics of Pico in a more precise medium than natural language.

Also a word about Pico’s virtual machine: in a time where just-in-time com-
pilation compensates for the lack of performance of an interpreter, we would like

19 the Pico virtual machine uses a single, contiguous memory space managed by a
particularly effective compacting mark-and-sweep garbage collector

20 a slight misnomer, because the base-level does not share the representation of pro-
gram expressions with the meta-level

21 a formally-minded individual may take offense at this, but remember that in this
discussion human stands for mere mortal

22 all of the techniques developed to optimize method lookup in dynamically typed
languages can be put to use here. In fact, the implementation of a cache that shadows
the global Pico environment (i.e. the native variables and function declarations)
already led to a Pico implementation that is only slightly less efficient than DrScheme

23 the R5RS report [r5rs] on Scheme contains a formal specification using denotational
semantics

to argue in favor of a high-level VM instruction set. And we see no reason why
this instruction set should not be based on some generic abstract grammar, as
is illustrated with Pico.

Finally: few of the ideas that helped shape Pico are truly original. In fact,
the real contribution of Pico is the merging into one package of a number of lan-
guage concepts that are more or less well understood. We omitted an exhaustive
list of bibliographical references as this would probably have doubled the size of
this paper; we trust that anyone familiar with the domain of programming lan-
guage engineering will identify the various concepts that we borrowed from the
existing body of knowledge and will not fail to trace them back to the original
contributors without our explicit help.

4 Bibliography.

[borg] Agent Mobility and Reification of Computational State, an experiment
in migration
Van Belle W. and D’Hondt T.
Infrastructure for Agents, Multi-Agent Systems, and Scalable Multi-Agent
Systems, Lecture Notes in Artificial Intelligence
Springer Verlag, 2000

[lmo] Of first-class methods and dynamic scope
D’Hondt T. and De Meuter W.
RSTI L’objet 9/2003. LMO 2003

[pico] http://pico.vub.ac.be
[r5rs] Revised5 Report on the Algorithmic Language Scheme,

Kelsey R., Clinger W. and Rees J. (eds.),
Higher-Order and Symbolic Computation, Vol. 11, No. 1, August, 1998
and ACM SIGPLAN Notices, Vol. 33, No. 9, September, 1998

[sicp] Structure and Interpretation of Programming Languages
Abelson H. and Sussman G.
MIT Press (1996)

[soap] On the Performance of SOAP in a Non-Trivial Peer-to-Peer Experiment
Van Cutsem T., Mostinckx S., De Meuter W., Dedecker J. and D’Hondt, T.
2nd International Working Conference on Component Deployment (CD 2004)

