
Software architecture adaptive compilers

Jonne Itkonen

Department of
Mathematical Information Technology

University of Jyväskylä Finland
E-mail: ji@mit.jyu.fi

Abstract

As software grows in size and complexity, compilers that
can adapt to software are needed, to ease the developers in
the quest for code optimised by multiple objectives simul-
taneously. In this paper, we consider briefly the possibility
of compilers adapting by software architecture.

1. Introduction

Current compiler technology concentrates on compiling
optimised code in general cases. Although compilers for
specific application domains have been written, compilers
that adapt are still rare. Developers do have quite rich pos-
sibilities to modify the code generation of the compiler via
command line arguments, but finding the optimal choice of
parameters can be a burdensome task that requires strong
expertise of not only the application domain, but of the spe-
cific compiler and computer architecture used.

Programmes are also compiled for a specific or gener-
alised computer architecture. This might lead to contra-
dictions betweenlocally and externally developed software.
This possibility has lead to the practice of continuously op-
timising compilers, that using data gathered from the ex-
ecution of the programme, try to recompile parts of the
programme more optimally. This technique of continuous
compiling has been applied to Java JIT compilers [1, 16], to
Self [7] and to C compilers [14].

The question this paper is asking is: Can the description
of the architecture of the software be used when trying to
find an optimal adaptation for a compiler? Can a compiler
automatically adapt to compile code optimised for the ar-
chitecture of the software?

The concept of adaptive compilers is introduced in Sec-
tion 2. Section 3 describes briefly the concepts of software
architecture and architecture description languages. Sec-
tion 4 gives some possibilities, where using Lisp would help
in writing adaptive compiler environments.

2. Adaptive compilers

Cooper et al. call an ordered list of selected transforma-
tions to be applied to the code to be compiled as thecom-
pilation sequence[3]. The traditional way of writing com-
pilers includes one or several compilation sequences chosen
by the developers of the compiler. The user of the compiler
can then choose from these sequences, or do some small
scale adjustments to the sequences by using command line
arguments. However, these sequences tend to be general ap-
proximations, compilation sequences suitable for many do-
mains instead of carefully adjusted to a particular domain,
although exceptions can be found (for example, in the field
of embedded software [3]).

Adaptive compilers try to find out the best possible com-
pilation sequence. This can be done by changing the order
or the parameters of the transformations in the compilation
sequence. The objectives for the generated code usually are
smaller size, faster execution speed or smaller power con-
sumption. Data, on which the chosen compilation sequence
is based on, can be gathered by executing the application
and collecting run-time data1, inspecting the results of the
compilation, or analysing the source code.

Another branch of adapting compilers is the lazily op-
timising compilers [7], that optimise code when the need
arises. When executing the code for the first time, compiler
just compiles the code, making no detailed optimisations.
During the execution of the programme, certain run-time
data is gathered and analysed, and the compiler is invoked
to recompile parts of code that have less than acceptable
performance.

There exists a wide variety of adaptive compilers, from
those written for languages like C/C++, Java and Oberon,
to those written for languages like Scheme, Self and Small-
talk. These compilers are mostly of the run-time analysing
flavour. What seems to be missing is compilers that adapt
to a given description of the architecture of the software.

1Similarly to a testing method sometimes calledgamma testing.



3. Software architecture and architecture de-
scription languages

One widely used definition for software architectures can
be found in [2, p. 21]:

The software architecture of a program or
computing system is the structure or structures of
the system, which comprise software elements2,
the externally visible properties of those ele-
ments, and the relationships among them.

The architecture of the software is designed to ease the
communication between the stake-holders, and to reason
about the fulfilment of functional and non-functional re-
quirements. Software architecture is documented from sev-
eral different points of view. Use of UML and similar
graphical notations completed with textual descriptions of
details of the architecture is the current state of the art. Use
of software architecture description languages has, alas, di-
minished since the middle of the 1990.

Software architecture description languages (ADL) are
used to describe software architectures on a level that would
make possible the manual or automatic reasoning about
the architecture, and to aid in the construction of the soft-
ware. ADLs are quite like Module Interconnection Lan-
guages (MIL) [4, 15], but compared to MILs, ADLs give
more emphasis to connectors between elements of the ar-
chitecture. This distinction is also valid between ADLs and
programming languages or object-oriented modelling lan-
guages, such as UML. Arguably, UML can be extended
to an ADL, but the success of UML can also be seen as
a hindering factor for the development of ADLs. An ex-
tensive classification and comparison of ADLs was written
by Medvidovic [13].

4. How Lisp can help?

Lisp could be used to implement an ADL, which would
describe the architecture of the software written with the tar-
get language, and drive the compilation and instantiation of
this software. The compiler for the target language should
be written in Lisp to get most out of the Lisp based ADL.

4.1. Lisp as an architecture description language

Lisp has many features build into it to present many
kinds of meta-data, from properties to the metaobject pro-
tocol [9]. Using these, an ADL similar to, for example,
Acme [5] could be implemented. The architectural descrip-
tion of the software could then be used to choose a candidate
for a compilation sequence.

2In older version of the referenced book, elements in the definition were
called “components”.

As a side note, this architectural description could also
be used to assure the architecture during the evolution of
the software. The description of architecture could be com-
pared to the structure of the software acquired by applying
different metrics. This is the area of our research currently,
first results published in [8]. Details of the method used can
be found in [11].

4.2. Compilers written in Lisp

If a Lisp compiler for a specific language is written, a
highly modularised architecture should be supposed. The
developer should be able to easily change the compiler, for
example, by adding and deleting transformations of com-
pilation and optimisation, and by changing their order or
arguments, even their implementation.

There has been quite an interesting events ongoing that
could develop into a C language compiler written in Lisp.
Recent thread in Usenet news group comp.lang.lisp, where
Paul F. Dietz teased the readers by suggesting that the GNU
C Compiler (gcc [6]) should be rewritten in Lisp3. Perhaps
this was the primus motor for Brian Mastenbrook to chal-
lenge the welfare of comp.lang.lisp community with the an-
nouncement ofsexpc, a s-expressions to C translation4. As
Mastenbrook himself writes:

sexpc is a program for translating a s-expression
based syntax tree for the C language into actual C
source code. [12]

4.3. Feedback from the executable

Aspect-Oriented Programming [10], AOP, which has its
roots near the Lisp community, is a technique to handle
the implementation of features like logging and memoiz-
ing, that are spread all around the code. AOP collects these
features to clear abstractions, that are the woven into the
code in points denoted by pointcuts. Aspects are usually
written in a suitable language, which is not necessarily the
same language the programme is written in.

Using AOP, the code to inspect the execution and report
that back to the compiler can be woven into the programme
by the weaver. This feedback is then analysed, the values of
the objective function calculated, and the results reflected
in the compilation sequence of the compiler. The feedback
could also be used by comparing it to the description of
the architecture of the software, to ensure that the run-time
structure of the programme is valid.

3Message-id:KfycncAJjJ7V-r6jXTWcqQ@dls.net
4Message-id: 010320042329298654%NOSPAMbmastenbNO-

SPAM@cs.indiana.edu . sexpc is available athttp://www.
common-lisp.net/project/sexpc .

2



5. Conclusion

In this paper we have described adaptive compilers, and
considered the possibility of compilers that could adapt
their compilation sequence to match the architecture of the
software to be compiled. This paper has presented some
possibilities of research, not answers nor implementations
of such kind of compilers. Also, the possibility of Lisp
based architecture description languages, to instruct the
compiler adaptation and to assure the architecture during
the evolution of the software, was considered. The research
should direct to implementing a Lisp based ADL, and to
implement a compiler written in Lisp, that then could be
used to experiment different architectures and their impact
on compiling.

One interesting question is, how are software developers
encouraged to use this ADL? Seems like ADLs are not quite
high on the hype meter, so the ADL and compiler should
give pretty solid results, that are competitive with the results
of the current compilers. Not an easy task, but a task worth
to seek for.

References

[1] M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. F. Sweeney.
Adaptive optimization in the jalapeno JVM. InConference
on Object-Oriented, pages 47–65, 2000.

[2] L. Bass, P. Clements, and R. Kazman.Software Architecture
in Practices. Addison-Wesley Longman Publishing Co.,
Inc., 2003.

[3] K. D. Cooper, D. Subramanian, and L. Torczon. Adaptive
optimizing compilers for the 21st century.J. Supercomput.,
23(1):7–22, 2002.

[4] F. DeRemer and H. H. Kron. Programming-in-the-large
versus programming-in-the-small.IEEE Transactions on
Software Engineering, 2(2):80–86, June 1976.

[5] D. Garlan, R. T. Monroe, and D. Wile. Acme: An archi-
tecture description interchange language. InProceedings of
CASCON’97, pages 169–183, Toronto, Ontario, November
1997.

[6] GNU Compiler Collection, GCC. http://www.gnu.
org/software/gcc/gcc.html .

[7] U. Hölzle. Adaptive optimization for Self: Reconciling high
performance with exploratory programming, 1994.

[8] J. Itkonen, M. Hillebrand, and V. Lappalainen. Application
of relation analysis to a small java software. InProceedings
of CSMR 2004, pages 233–239, Tampere, Finland, March
2004. IEEE Computer Society.

[9] G. Kiczales, J. des Rivières, and D. G. Bobrow.The art of
metaobject protocol. MIT Press, 1991.

[10] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented pro-
gramming. In M. Akşit and S. Matsuoka, editors,Proceed-
ings European Conference on Object-Oriented Program-
ming, volume 1241, pages 220–242. Springer-Verlag, Ber-
lin, Heidelberg, and New York, 1997.

[11] J. Krajewski. QCR – A methodology for software evol-
ution analysis. Master’s thesis, Technical University
of Vienna, April 2003. Available online athttp:
//www.infosys.tuwien.ac.at/teaching/
thesis/online/Krajewski/krajewski.pdf .

[12] B. Masterbrook. S-expression to C transla-
tion -manual, March 2003. Available athttp:
//www.common-lisp.net/project/sexpc/
repos/sexpc/documentation.html .

[13] N. Medvidovic and R. N. Taylor. A classification and com-
parison framework for software architecture description lan-
guages.Software Engineering, 26(1):70–93, 2000.

[14] M. P. Plezbert and R. K. Cytron. Does “just in time” =
“better late than never”. InProceedings of the 24th ACM
SIGPLAN-SIGACT symposium on Principles of program-
ming languages, pages 120–131. ACM Press, 1997.

[15] R. Prieto-Diaz and J. M. Neighbors. Module interconnection
languages.J. Syst. Softw., 6(4):307–334, 1986.

[16] T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and
T. Nakatani. A dynamic optimization framework for a java
just-in-time compiler. InProceedings of the 16th ACM SIG-
PLAN conference on Object oriented programming, systems,
languages, and applications, pages 180–195. ACM Press,
2001.

3


