
Generalized comprehensions for Common Lisp

Sven-Olof Nyström
Department of Information Technology,

Uppsala University, Sweden
svenolof@csd.uu.se

ABSTRACT
Several functional programming languages have a feature
called list comprehensions. This paper presents an imple-
mentation of list comprehensions for Common Lisp. It has
been extended to match the expressiveness of Common Lisp’s
loop facility. For example, it allows traversal and construc-
tion of hash tables, arrays and vectors, general iteration,
parallel iteration over two or more sequences, and the abil-
ity to terminate a collection when a condition are met. It is
also possible to extend it to handle the traversal and collec-
tion in other data structures.

1. INTRODUCTION
Several programming languages (for example Haskell, Er-
lang and Python) have a feature called list comprehensions [5,
6] to facilitate the manipulation of lists. List comprehen-
sions are inspired by a notation sometimes used in mathe-
matics which allows expressions such as

{x ∗ x | x ∈ S, x odd, x < 5}

For example, in Erlang, the following expression

[X*X || X <- L, X rem 2 == 1, X < 5].

traverses a list L and returns the square of those elements
that are odd and less than 5.

Common Lisp already has a powerful construct for express-
ing iteration, the loop facility [4, Chapter 26]. It resembles
list comprehensions in that it supports list traversals and
collecting results in a list. It is in some sense more power-
ful as it also allows (for example) iterating over ranges of
integers and collecting the result as a sum.

This paper presents an implementation of list comprehen-
sions in Common Lisp. It has been extended to match the
expressiveness of Common Lisp’s loop facility. For example,

it allows traversal and construction of hash tables, arrays
and vectors, general iteration, parallel iteration over two or
more sequences, and the ability to terminate a collection
when a condition are met. It is also possible to extend it to
handle the traversal and collection in other data structures.
The implementation can be downloaded from the author’s
homepage.

Section 2 presents the generalized comprehension system.
Section 3 shows how the comprehension system can be ex-
tended to handle new data types. In the Section 4, the
formal semantics of the system is discussed briefly. Sec-
tion 5 compares the generalized comprehension system with
the loop facility, and Section 6 discusses related work.

2. GENERALIZED COMPREHENSIONS
Let’s first look at some simple uses of list comprehensions.

The expression

(collect (list) ((* x x))

(in x ’(1 2 3 4 5 6 7 8)))

evaluates to the list

(1 4 9 16 25 36 49 64)

In general, a collect expression has three parts;

1. A description of the type being built (the collection
type),

2. a list of expressions giving the values to be inserted.
and

3. one or more clauses.

The list comprehension given early in the introduction is
written:

(collect list ((* x x))

(in x l)

(when (= (mod x 2) 1))

(when (< x 5)))

1

To build a vector instead of a list, change the collection type
from list to vector:

(collect vector ((* x x))

...)

2.1 Generator clauses
A clause of the form

(if var exp)

or

(in (var*) exp)

iterates over the data structure returned by the expression
exp. The first form can be used when the expression evalu-
ates to a sequence (for example, a list or a vector). Then,
the variable will be bound to each element of the sequence,
in turn.

In some cases, one position in the data structure may cor-
respond to two or more values. For example, if h is a hash
table, the clause

(in (k v) h)

will bind the variables k and v to each key and corresponding
value in the table. If a is a vector (i.e., a one-dimensional
array),

(in (i v) a)

will bind i and v to each index and corresponding value in
the array.

As a more interesting example, consider the following func-
tion which builds a list of all permutations of a list (first
given by Turner [5]).

(defun perms(l)

(cond

((null l) (list nil))

(t (collect list ((cons a b))

(in a l)

(in b (perms (remove a l)))))))

For example, the function call

(perms ’(a b c))

returns

((A B C) (A C B) (B A C)

(B C A) (C A B) (C B A)).

2.2 Filters
A clause

(when exp)

will cause the iteration to skip any value for which the ex-
pression evaluates to nil. In the example early in this sec-
tion, we used two when-clauses to skip those values for x

which were even or greater or equal to 5.

2.3 Computed sequences
A clause

(step var init-exp next-exp)

resembles a for-statement in C. It will bind the variable var
to the elements of an unbounded sequence, where the first
element is computed by evaluating the init-exp and subse-
quent values are computed by evaluating next-exp, which
may contain references to the previous value of var. For
example,

(step x 0 (< x 100) (+ 1 x))

will bind x to each number from 0 to 99.

2.4 Terminating iteration
A clause

(while exp)

will terminate the iteration as soon as the expression exp
evaluates to nil.

2.5 Parallel iteration
A clause

(for clause*)

combines several in- and step- clauses. All iterations are
performed in parallel. For example, the clause

(for (in x ’(a b c))

(in y ’(2 3 5 7 11)))

gives us three iterations; in the first x is bound to the atom
a and y to the integer 1, in the second x is bound to b and
y to 2, and in the last iteration x and y are bound to the
atom c and the integer 3, respectively.

2.6 Pure side effects
A clause

(do exp)

will evaluate the expression for side effects. For example,

(collect (list) (x)

(in x ’(1 2 3 4 5))

2

(when (= (mod x 2) 1))

(do (print x)))

will print the integers 1 3 and 5 (and return a list of those
integers).

2.7 Simple collection types
We have already seen uses of one basic collection type, list.
This will simply collect the results in a list. In the same way,
an expression

(collect vector ...)

will collect the results in a vector.

In some situations, we are only interested in the last value
of a variable. The collection type ”t” gives us this. For
example,

(collect t (x)

(in x ’(1 2 3)))

returns 3. (There will be more interesting examples later.)

The collection type nil always returns nil. It is intended
for situations where the comprehension is evaluated for side
effects. Example:

(collect nil ()

(in x ’(1 2 3))

(do (print x)))

The collection type max returns the maximum value, and
sum the sum of all values. So

(collect max (x)

(in x ’(4 7 1 1)))

returns 7, and

(collect sum (x)

(in x ’(4 7 1 1)))

returns 13.

It is also possible to specify directly how values are to be
combined. A collection type of the form (reduce f) takes a
binary function f and uses it to combine the values generated
by the iteration, so the collection type (reduce #’+) has the
same effect as the collection type sum. Similarly,

(collect (reduce #’*) (x)

(in x ’(4 7 1 1)))

returns the product of the values in the list, 28.

2.8 Hash tables
Sofar, we have only considered comprehensions which either
produce a sequence of results, or a single result. A hash
table is of course an association of keys to values, which
would correspond to a sequence of pairs of values rather
than a sequence of values.

Let us first consider the simple case:

(collect hash-table (x)

(in x ’(a b c)))

This expression will build a hash table with the keys a, b

and c. The corresponding value for each key is the atom t.

To associate a value with each key, we use collection types of
the form (hash-table type) where type is also a collection
type. For example

(collect (hash-table t) (k v)

(in pair ’((a 2) (b 3) (c 5)))

(let k (car pair))

(let v (cadr pair)))

builds a hash table with three entries, mapping the atom a to
the integer 2, b to 3 and c to 5. The collection type t given
as an argument indicates how values are to be combined.
Thus, if the same key occurs several times in the sequence,
the last entry is kept.

One may of course give other collection types as arguments.
For example,

(collect (hash-table sum) (x 1)

(in x l))

computes a hash table which maps each element of the list
to its frequency.

But sometimes many keys have the same value. Suppose for
example that h is a table mapping cities to their countries;
say

City Country

berlin germany

hamburg germany

liverpool england

london england

lyon france

paris france

oslo norway

If we are interested in listing for each country the cities in
that country, one might want to build a hash table which
maps each country to a list of cities. This can be done with
the following expression:

(collect (hash-table list) (v k)

(in (k v) h))

3

Of course, if we preferred to store the cities in a vector, we
would write

(collect (hash-table vector) (v k)

(in (k v) h))

instead.

2.9 Collecting Arrays
Using the collection type (array ...) resembles collecting
in a hash table. In both cases, the position of the entry must
be given, and it also necessary to indicate how the values in
each entry are to be combined.

The general syntax for the array collection type is

(array type (exp∗) &rest args),

where type indicates how entries are to be combined, the
list of expressions gives the dimensions of the array, and the
following arguments are passed directly to the make-array

constructor. For example, the expression

(collect (array t (10)) (i (* i i))

(in i ’(2 3 5 7)))

will build the array

#(NIL NIL 4 9 NIL 25 NIL 49 NIL NIL).

As a more complex example, suppose we want to add a list
of vectors, which may be of different lengths. (The shorter
vectors should be treated as if they were padded with zeros.)

(defun add-vectors (&rest vectors)

(let ((l (collect (max) ((length v))

(in (v) vectors))))

(collect (array (sum) (l)

:initial-element 0) (i x)

(in (v) vectors)

(in (i x) v))))

The first collect expression simply collects the maximum
length of the vectors in the list. The second collect expres-
sion creates an array of the maximum length, iterates over
each array and adds its contents to the result.

2.10 More about complex collections
Most collections are simple; collecting the results in a list, a
vector or a hash table, or simply summing the results. Even
when we limit ourselves to simple data structures the collect
macro is surprisingly versatile.

However, the collect macro also allows the result to be col-
lected in more complex data structures. Let’s look at some
examples.

Suppose we have a list

vehicles = ((ford sedan john-smith id12334) ...),

where each vehicle is represented as a four-element list con-
sisting of manufacturer, type of vehicle, name of owner, and
identity number (to simplify the example we assume that all
fields contain atoms).

A collect expression of the form

(collect ...

(in entry vehicles)

(let make (car entry))

(let type (cadr entry))

(let owner (caddr entry))

(let id (nth entry)

...)

can be used to extract various types of information from the
list of vehicles. Writing

(collect sum (1)

...

(when (eq make ’ford)))

counts the number of vehicles manufactured by Ford. If we
want to create a table of all manufacturers and the number
of vehicles that are listed for each make, we can write

(collect (hash-table sum) (make 1)

...)

One can of course use the same pattern to build a table of
all owners and how many vehicles the have:

(collect (hash-table sum) (owner 1)

...)

Suppose now that we want to build a table of all makes. For
each make we want to build a table of all people who own
at least one vehicle of this make, and list the vehicles they
own of this make. All this can be accomplished with this
collect expression:

(collect

(hash-table (hash-table list)) (make owner entry)

...)

Suppose we want to find groups of words that are each
other’s permutations, i.e., containing the same letters in an-
other order. If the collection type hash-table is passed more
than one argument, the rest of the argument list is passed
to the constructor make-hash-table. Thus, the collection
type (hash-table ... :test #’equal) creates a hash ta-
ble which uses a hash function appropriate for strings.

(defun anagram (l n)

4

(let ((table

(collect (hash-table list

:test #’equal)

(key s)

(in s l)

(let key (sort (copy-seq s) #’char<)))))

(collect list (l)

(in (k l) table)

(when (>= (length l) n)))))

The program takes a list of strings and an integer, and re-
turns those groups of words that are larger than n.

For example, the call

(anagram ’("foo" "oof" "fo" "ofo" "of"

"ba" "bar" "bart" "rab") 2)

returns

(("bar" "rab")

("fo" "of")

("foo" "oof" "ofo"))

2.11 Syntax and semantics
The syntax of a collect expression is given by the syntax

collect ::= (collect type-exp exp∗ clause∗)
type-exp ::= type-name

| (type-name type-exp∗&rest args)

clause ::= generator
| (when exp)
| (let var exp)
| (do exp∗)
| (while exp)
| (for generator∗)

generator ::= (in (var∗) exp)
| (in var exp)
| (step var exp exp)

where exp is any Lisp expression and var is a variable.

Suppose l is a list, a an arbitrary sequence (for example
a vector) and h a hash table. The following iterations are
implemented:

(in v l) Bind v to each element of l
(in v a) Bind v to each element of a
(in (k v) a) As above, but let k be the index of the

element
(in (k v) h) Bind k and v to each key-value pair of h
(in k h) Bind k to each key of h

3. EXTENDING COMPREHENSIONS
As the implementation of list comprehensions presented in
this paper is written using the Common Lisp Object System
(CLOS), it is easy to extend it to handle new data types.
Suppose, for example, that we are interested in computing
the average of a set of results. To introduce a new collection
type, one gives a new method definition for make-collector:

(defmethod make-collector ((kind (eql ’ave)) args)

(assert (null args) (kind args)

"Collector ave expects 2 arguments")

(values (list (gensym))

‘#’(lambda () (cons 0 0))

‘#’(lambda (s x) (cons (+ x (car s))

(1+ (cdr s))))

‘#’(lambda (s) (/ (car s) (cdr s)))))

make-collector should take two arguments, the first should
be the name of the collection type (usually an atom) and the
second should be a list of arguments. In this case, the collec-
tion type ave should not receive any arguments so we include
an assertion that checks that args is indeed the empty list.
make-collector should return three quoted functions;

1. A function which returns an initial value giving the
state of the collection before any values have been in-
serted.

(In our example, the initial value is the pair (0 . 0),
i.e., total sum is 0, and 0 elements have been inserted.)

2. A function which takes the state of the collection and
a new value, and returns a new state.

In the example, we keep track of the sum and the num-
ber of elements inserted.

3. A function which takes a collection state and returns
a final result.

In the example, the result is calculated by dividing the
sum with the number of elements collected.

With the definition above, calculating the average of a list,
say,

(collect ave (x)

(in x ’(2 3 5 7)))

works as expected (the result is 17/4). Note that the col-
lection type ave can also be combined with other collection
types. For example, suppose l is a list associating atoms
with values, say,

((john 2) (bob 23) (john 39)

(john 38) (bert 32) (bob 102))

To compute the average of the values associated with each
atom, simply write

(collect (hash-table ave) (name result)

(in entry l)

(let name (car entry))

(let result (cadr entry)))

which gives us a table which maps bert to 32, bob to 125/2,
and john to 79/3.

In the same way, it is possible to define iterators for new
data types. Suppose, for example, that we want to iterate
over the bits of integers. The method definition

5

(defmethod iterator ((arity (eql 1)) (a integer) f)

(funcall f

#’(lambda ()

(let ((a0 a))

(setq a (floor (/ a 2)))

(values (not (= a0 0)) (mod a0 2))))))

of iterator describes how to iterate over an integer. An
iterator method should take three arguments; its arity, i.e.,
the number of values obtained at each iteration; the object
being iterated over, and a function. The function should be
called with another function as argument. This function, in
turn, is what one would normally think of as the iterator.
Each time it is called, it returns two values; a truth value
indicating whether there are more elements in the iteration,
and the next value (if any).

Given the definition above, we can immediately perform it-
erations over integers. For example,

(collect list (x) (in x 42))

returns the list

(0 1 0 1 0 1).

4. SEMANTICS
In this section we will briefly discuss the semantics of the
extensions of list comprehensions presented in this paper.
No formal specification will be attempted, but hopefully the
discussion will give the reader some idea on what a formal
semantics would look like. We will only consider programs
with no side-effects.

Wadler [6] gives a semantics for the basic form of list com-
prehensions as a set of reduction rules.

Suppose we evaluate a list comprehension

(collect list (exp) ...)

in a state σ. The clauses of the comprehension give us a se-
quence of states σ0, σ1, . . ., σn−1. The expression exp is eval-
uated for each state, giving a sequence of values x0, . . . , xn−1,
which will be the the elements of the resulting list.

In-, when- and step-clauses can be seen as taking a state
and return a sequence of zero or more states.

An in-clause

(in var exp)

evaluated in a state σ where exp evaluates to the list

(x0 x1 . . . xn−1)

will give us the sequence of states

σ0, σ1, . . . σn−1,

where σi = σ[var 7→ xi].

A when-clause

(when exp)

evaluated in a state σ will either give us the empty sequence
of states, if exp evaluates to nil, or to the sequence consist-
ing of the single state σ, if exp evaluates to anything else.

A step-clause

(step var init-exp test-exp next-exp)

evaluated in a state σ produces a sequence σ0, σ1, . . . , σn−1

where

σ0 = σ[var 7→ x0]
σi+1 = σi[var 7→ xi+1], for i ≤ 0

where x0 is the result of evaluating expression init-exp in
state σ, xi+1 is the result of evaluating next-exp in state
σi, and test-exp evaluates to a non-nil value in all states
σ0, . . . σn−1 and to nil in σn.

Recall that a for-clause gives a parallel combination of sev-
eral step- and in- clause. To simplify the discussion, we only
consider the case with two clauses, and assume that the sets
of variables defined by the two clauses are disjoint.

Consider a clause

(for c1 c2).

Assume that given the initial state σ, clause c1 gives the se-
quence σ0, σ1, . . . , σn−1 and clause c2 the sequence of states
ρ0, ρ1, . . . , ρm−1.

Now, we would like the result of the for-clause to be a com-
bination of the two sequences, i.e., a sequence of states of
the same length as the shorter of the two sequences, where
each state is a combination of the corresponding states in
the two sequences.

Given states σi and ρi, we know that for any variable v, it is
either defined in only one of the two states (or in none), or
it has the same value in both. We define the resulting state
δi as follows:

δi(v) =

σi(v), if v is defined in σi

ρi(v), if v is defined in ρi but not in σi

undefined otherwise

The combination of the two iterations gives the sequence

δ0, δ1, . . . , δk−1,

where k is the minimum of n and m.

5. A COMPARISON WITH THE LOOP FA-
CILITY

The loop facility of Common Lisp [4] is a very powerful
and flexible programming language construct for expressing
various types of iteration. We will briefly present the main
features of the loop facility and compare it to the generalized
comprehension system.

6

For example, it allows iteration over a range of integers, a
list, the entries of a hash table or the external symbols of
a package. It supports various forms of value accumulation;
for example, the result may be collected in a list, or (if the
values are numerical) the result may be computed as the
sum of values. For example, the following loop expression
returns the list of the squares of integers from 1 to 9.

(loop

for x from 1 to 9

collect (* x x))

The loop facility allows several collect clauses, causing the
values produced from different clauses to be interleaved.
More interesting, a collect clause can name the result be-
ing collected, and the intermediate result can be used in the
loop. For example,

(loop

for x from 1 to 3

collect (* x x) into y

do (print y))

prints

(1)

(1 4)

(1 4 9)

Being able to name a result is convenient if we want to
partition the elements of a list. For example, the following
expression

(loop

for x in l

when (symbolp x) collect x into y

when (integerp x) collect x into z

finally return (list y z))

returns a list of two lists, where the first contains all ele-
ments that are symbols and the second all elements that are
integers. If l is the list

(one 2 "three" 4 and five))

the result is ((ONE AND FIVE) (2 4)).

Expressing this partition using comprehensions is not com-
pletely straight-forward. One solution is

(collect (array list (2)) (i x)

(in x l)

(when (or (symbolp x) (numberp x)))

(let i (if (symbolp x) 0 1))))

which returns the two list in a two-element array. One might
also consider using let-bound variables to store the accumu-
lated result, i.e.,

(let

((symbols nil)

(numbers nil))

(collect nil ()

(in x l)

(do (when (symbolp x)

(push x symbols)))

(do (when (numberp x)

(push x numbers))))

(list symbols numbers))

A single list comprehension can contain several nested loops,
as for example the permutation function given in an earlier
section. A straight-forward rewrite of this function using
the loop facility gives a slightly longer program. In the au-
thor’s opinion, the version written using list comprehensions
is much easier to understand.

(defun perms (l)

(cond

((null l) (list nil))

(t (loop

for a in l

append (loop

for b in (perms (remove a l))

collect (cons a b))))))

Compared to the comprehension system, the loop facility
does not offer much support in the construction of complex
data structures. Consider, for example, the last example in
Section 2.8. Solving this problem in Common Lisp using
the loop facility would not be much easier than solving it
in some conventional programming language (assuming that
the necessary data structures are available in some standard
library).

The loop facility has sometimes been criticized for having a
non-lispy syntax with keywords etc. Paul Graham [1] points
out that some combinations of clauses in a loop expression
do not have a well-defined meaning and recommends against
the us of the loop facility.

6. RELATED WORK
Some of the extensions to list comprehensions proposed in
this paper have counterparts in other programming lan-
guages.

Step clauses can easily be simulated in Haskell [2] using other
constructs.

A recent proposal [7] describes an extension to Python called
dict comprehensions. This proposal would allow the conve-
nient creation of dictionaries from a sequence of key-value
pairs, offering a functionality similar to the use of hash ta-
bles in expressions of the form:

(collect (hash-table t) (k v) ...))

Reade [3] proposed an extension to Haskell called list ter-
minators. These correspond exactly to the while clauses
described in Section 2.4.

7

7. CONCLUSIONS
We have presented an implementation of list comprehensions
for Common Lisp. The system has been extended to handle
the rich set of data types offered by the language. The sys-
tem presented here can traverse and construct lists, vectors,
arrays, and hash-tables (even nested structures), and has
control structures (parallel iteration and termination) not
normally offered by list comprehensions. It is also relatively
straight-forward to extend the system to handle more data
types.

8. REFERENCES
[1] Paul Graham. ANSI Common Lisp. Prentice Hall, 1996.

[2] Simon Peyton Jones, editor. Haskell 98 Language and
Libraries: The Revised Report. Cambridge University
Press, April 2003.

[3] Chris Reade. Terminating comprehensions. Journal of
functional programming, 3(2):247–250, April 1993.

[4] G. L. Steele Jr. Common Lisp: The Language, Second
Edition. Digital Press, Bedford (MA), USA, 1990.

[5] D. A. Turner. Recursion equations as a programming
language. In J. Darlington et al, editor, Functional
programming and its applications. Cambridge
University Press, 1982.

[6] Philip Wadler. List comprehensions. In Simon Peyton
Jones, editor, The implementation of functional
programming languages. Prentice-Hall, 1987.

[7] Barry A. Warsaw. Dict comprehensions. Python
Enhancement Proposal 274, 2001.

8

