
Grouping Common Lisp Benchmarks
Bignums and Consing and Vectors, Oh My!

Christophe Rhodes∗

Centre for Computational Creativity
City University

Northampton Square
London EC1V 0HB

April 5, 2004

Abstract

Compiler benchmarks provide a means for compiler writers to measure their per-
formance, as well as for potential users to estimate whether a given implementation
will suit their performance needs. We present a simple application of clustering algo-
rithms in the programmatic examination of a freely-available suite of benchmarks to
estimate the similarity of the codepaths tested, and find a grouping of benchmarks
with respect to the implementation.

1 Introduction

Measuring the performance of Lisp systems is an important art, particularly given the
common yet woefully ill-informed perception that Lisp is a ‘slow language’. It is therefore
not surprising to find that there are many studies, from the relatively old [1] to more
recent presentations [2] of comparative performances on suites of benchmarks.

The de facto standard performance benchmark suite for Common Lisp today is the
cl-bench [3] suite, which aggregates among other benchmarks the well-known Gabriel
benchmarks, bignum-exercising code due to Bruno Haible, hash table stressing, and tests
of various aspects of CLOS. The benchmarks within the suite are classified by broad cat-
egory for presentation as a series of graphs, but this classification is performed by hand,
with a view to the history of the benchmarks and to their outward form, rather than
to any underlying behaviour of the benchmarks. We argue here for a more automatic
classification based on past performance characteristics, so that users and implemen-
tors alike can determine whether additional benchmarks give any new information, and
whether a given benchmark measures what it claims to measure.

∗crhodes@city.ac.uk



Classification of benchmarks in this fashion is likely to be useful both to users and
to implementors. The gain for users is indirect: while a classification in terms of the
outward appearance of the code, or by history, is valid from the user’s point of view, it
is also of importance to know which benchmarks test independent subsystems, so that
the perception of implementations’ performance is not biassed by a preponderance of
benchmarks within a suite testing any particular codepath over the others.

The benefit to implementors is more immediate; much as it is nowadays considered
de rigeur in any sizeable software project to have a regression test suite (to manage the
complexity of interacting systems), it is useful to have a suite testing execution time,
so that avoidable degradations in performance can be caught early and remedied. The
classification, or rather the knowledge of which benchmarks exercise which codepaths
in a compiler, assists the implementor in pinpointing the cause of any performance
degradation that may occur.

2 Analysis

We model each timing result tij for a benchmark i and implementation revision j as the
weighted sum of conceptual components (or codepath costs) due to the implementation
fkj , so that

tij = aikfkj + noise. (1)

For a given implementation, then, a benchmark is characterized by the aik coefficients,
and the change in timings over versions is due to the implementation improving (or
otherwise) its performance in the components fkj . This statement is only valid on
the assumption that the implementation does not change its evaluation strategy in any
pervasive way; for instance, the introduction of an interpreter to a compiler-only imple-
mentation might be modelled as addition of a new fkj ; equivalently, however, this ‘new’
fkj can be thought of as having been there all along, but until the interpreter’s addition
having performance characteristics degenerate with the old evaluation strategy.

A measure of the closeness of benchmarks, then, is the similarities of their response;
if we assume that changes between revisions j are sufficiently atomic as to have only one
effect on the components f , then the change in t is a direct measure of the weights a,
and therefore the benchmarks’ underlying similarity. Since revisions are not necessarily
atomic with respect to the components, and since statistical noise contaminates timing
values, we need to disentangle sources.

One way of doing so is to estimate clusters within the data. Here we present the
application of hierarchical clustering as a simple method for data visualization and esti-
mation. Given timing results tij ± σij , where σij is our estimate for the standard error
on tij , we construct the delta vectors δij by

δij =

{
tij+1−tij
maxj tij

tij+1 − tij > n
√

σ2
ij+1 + σ2

ij

0 otherwise
, (2)



STRING-CONCAT
SEARCH-SEQUENCE
CLOS/simple-instantiate
CLOS/complex-methods
BENCH-STRINGS
FPRINT/PRETTY
CLOS/instantiate
CLOS/method+after
FPRINT/UGLY
3D-ARRAYS
2D-ARRAYS
PUZZLE
BIGNUM/ELEM-10000-1
BIGNUM/ELEM-1000-100
FRPOLY/BIGNUM
FACTORIAL
CLOS/methodcalls
PI-RATIOS
BIGNUM/ELEM-100-1000
FIB-RATIO
PI-DECIMAL/SMALL
BIGNUM/PARI-100-10
PI-DECIMAL/BIG
BIGNUM/PARI-200-5
PI-ATAN
BOYER
LOAD-FASL
COMPILER
CLOS/defclass
CLOS/defmethod
SUM-PERMUTATIONS
RICHARDS
HASH-STRINGS
1D-ARRAYS
fill-strings/adjustable
DEFLATE-FILE
EQL-SPECIALIZED-FIB
SLURP-LINES
BOEHM-GC
TAKL
TRIANGLE
FFT
TAK
TRTAK
BROWSE
ACKERMANN
MANDELBROT/DFLOAT
CRC40
DERIV
DDERIV
DIV2-TEST-2
DIV2-TEST-1
FRPOLY/FLOAT
FRPOLY/FIXNUM
HASH-INTEGERS
BITVECTORS
CTAK
DESTRUCTIVE
MRG32K3A
FIB
STAK
TRAVERSE
MANDELBROT/COMPLEX
WALK-LIST/SEQ
WALK-LIST/MESS

Figure 1: Benchmark clustering, based on results with SBCL versions



Arrays FPRINT/UGLY – PUZZLE
Boxed Numbers BIGNUM/ELEM-10000-1 – PI ATAN
Compiler COMPILER – SUM-PERMUTATIONS
Vectors 1D-ARRAYS – SLURP-LINES
Consing MANDELBROT/DFLOAT – DIV2-TEST-1
Unprobed TRAVERSE – WALK-LIST/MESS

Table 1: Tentative benchmark cluster allocations and characterizations

where N is an adjustable parameter measuring the confidence required for a step to be
treated as significant. We can then cluster the benchmark δij against each other using
a Euclidean distance metric to give a visualization of benchmark relationships.

We performed this clustering on benchmark results, obtained on a 1GHz Pentium III
with 1Gb RAM running FreeBSD, from versions of SBCL [4] dating from May 2001 to
March 2004, using data from all released versions in this period (approximately one every
month) as well as several series of revisions between releases1; n was set to 3, echoing
scientific convention. Note that the monthly data are probably not from sufficiently
atomic changes for our assumption, above, to hold. The results are shown2 in figure 1.

From the figure, we can make some tentative identifications. In typical clustering
applications, to get k clusters we simply cut the k longest links in the dendrogram.
However, this is not so appropriate to our aims here; we want to identify tightly-spaced
regions of multiple benchmarks.

Table 1 shows some tentative allocations of benchmarks to clusters of strong sim-
ilarity, as well as speculative characterizations of these clusters’ dominant factor for
SBCL; while some of the elements of clusters are probably erroneous – it is difficult to
imagine CLOS/methodcalls being a benchmark testing boxed numbers intensively, for in-
stance – some of the other groupings are revealing: detecting that SBCL’s performance
in CLOS/defclass and CLOS/defmethod is related to its performance in the COMPILER
benchmark.

Of course, one weakness of this method is that it cannot assign to any cluster a bench-
mark which has not exhibited any significant changes in times over the history; in this
investigation, for SBCL, the TRAVERSE, MANDELBROT/COMPLEX, WALK-LIST/SEQ
and WALK-LIST/MESS belong in this “Unprobed” category. Another weakness is the
loss of distance information between clusters to simply a binary ‘nearest’ relation. We
can nevertheless confirm that at least some of the clusters we have identified are robust,
by comparing with a simple alternative visualization: a graph representing clusters iden-
tified solely by distance (figure 2).

1see http://sbcl.boinkor.net/benchmark/ for the raw data.
2Graphical representation courtesy of McCLIM’s implementation of the CLIM Graph Formatting

protocol.



3D-ARRAYS

2D-ARRAYS PI-DECIMAL/BIG

BIGNUM/PARI-200-5

BIGNUM/PARI-100-10

BIGNUM/ELEM-100-1000

BIGNUM/ELEM-1000-100

PI-ATAN

PI-DECIMAL/SMALL

FIB-RATIO

BIGNUM/ELEM-10000-1

MRG32K3A

FIB

DESTRUCTIVE

FRPOLY/FIXNUM

CTAK

BITVECTORS

FFT

HASH-INTEGERS

FRPOLY/FLOAT

MANDELBROT/DFLOAT

BOEHM-GC

HASH-STRINGS

PI-RATIOS

CLOS/methodcalls STAK

DDERIV

CRC40BROWSE

DIV2-TEST-2

DIV2-TEST-1

DERIV

ACKERMANN

TRIANGLE

TAK

TAKL

FACTORIAL

WALK-LIST/MESS

MANDELBROT/COMPLEX

TRAVERSE

fill-strings/adjustable

DEFLATE-FILE

1D-ARRAYS

FRPOLY/BIGNUM

TRTAKPUZZLE

WALK-LIST/SEQ

Figure 2: Simple distance-based clustering of benchmarks.



3 Further Work and Conclusions

It is clear that this analysis can yield valuable information to people wishing to interpret
results of benchmarks; while this clustering can in no way detract from the raw measured
performance, it can help to explain particular characteristics in an implementation, and
to understand differences between implementations on the same hardware. It is also clear
that the visualisation of clusters from this scheme is imperfect and largely dependent
on a fair amount of familiarity with the implementation in question; a higher resolution
on the revision scale would help with this, but it is probably necessary to develop a
complementary visualisation technique to identify essentially degenerate benchmarks.

One continuation of potential interest would be to repeat this analysis using bench-
mark results from a different implementation. This presents an interesting technical
challenge, however, in that for practicality the implementation has to be available with
incremental changes at a resolution of no greater than a month, and ideally on a finer
scale. For practical reasons, this therefore reduces the other potential ANSI Common
Lisp implementations for this investigation to those which can be reliably built from
source with no external thought3: in essense, to CLISP. This would nonetheless be an
interesting comparison to make, as the two implementations share no common history.

In this investigation, we benefitted from Lisp’s dynamicity while investigating suit-
able measures and distance metrics, and also from CLIM’s extensible graphical tools
(McCLIM’s Postscript extensions for preparing figure 1 and the McCLIM Listener ap-
plication for rapid feedback). The benchmark results themselves, as we have observed,
should be taken with a pinch of salt, not only because they do not necessarily measure
what an application programmer will use, but also because different benchmarks may
be measuring similar underlying processes.

Acknowledgments

I am grateful to Andeas Fuchs for writing programs to execute the benchmark suites and
for performing the runs, and to Eric Marsden for useful discussions, and for assistance
in preparing figure 2.

References

[1] Richard P. Gabriel. Performance and Evaluation of Lisp Systems. MIT Press, 1985.

[2] Rainer Joswig. Lisp and Mac OS X. In International Lisp Conference Proceedings,
2003.

[3] Eric Marsden. Common Lisp Benchmarking Suite. Available at
http://www.chez.com/emarsden/downloads/cl-bench.tar.gz.

[4] Christophe S. Rhodes et al. Steel Bank Common Lisp User Manual. in preparation.
3This quality is part of SBCL’s raison d’être.


